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Abstract

Object detection models have great potential to increase both the frequency and
cost-efficiency of assessing climate-relevant infrastructure in satellite imagery.
However, model performance can suffer when models are applied to stylistically
different geographies. We propose a technique to generate synthetic imagery using
minimal labeled examples of the target object at a low computational cost. Our
technique blends example objects onto unlabeled images of the target domain.
We show that including these synthetic images improves the average precision of
a YOLOv3 object detection model when compared to a baseline and other popular
domain adaptation techniques.

1 Introduction

From power plants to wildfires, many of the causes and consequences of climate change are visible
from above. Accurate geospatial information about the causes of climate change including energy
infrastructure systems is critical to planning climate change mitigation and adaptation strategies.
However, spatial data on current energy infrastructure is often lacking – the data may not be publicly
available, may be incomplete, or may not contain sufficient granularity [1]. Recent research has
demonstrated the potential of using satellite imagery to fill the data gaps by monitoring energy
systems at unprecedented frequencies and scale [2] [3]. Two remaining challenges to applying these
techniques at scale include: (1) a lack of large datasets with labeled data for relevant applications,
and (2) the challenge of applying these techniques across diverse geographic domains.
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Figure 1: Overhead images of wind turbines from different regions of the United States

The first issue is the high number of labeled examples required to successfully train a model. Build-
ing the right dataset can be challenging because of the labor-intensive nature of accurate data labeling
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[4]. This is of particular significance in the case where the object of interest is rare and few labeled
instances may exist, which is arguably often the case for data related to energy and climate systems.

The second challenge is to apply these techniques across geographic domains. While we are often
limited to acquiring image data from a narrow set of geographies, we may want to apply models more
broadly to different geographic regions. This difference in the visual properties of the images we use
to train versus those we use to test our models is known as the domain gap and deep neural network
models often perform unreliably in such conditions [5]. Our experiments trained object detection
models to detect one type of energy infrastructure, wind turbines, and differentiated between within-
domain experiments in which we create a wind turbine detection model using training and testing
imagery from the same geographic domain, versus cross-domain experiments where we train our
model on one domain and test it on a different domain. As an example, a within-domain experiment
may train on images of wind turbines from the Northwest U.S. and validate on other images from the
Northwest. In contrast, a cross-domain experiment may train on images from the Northwest and test
on images from the Southwest. We expect object detection performance to suffer in cross-domain
contexts due to the presence of a domain gap. We experimentally demonstrated the existence of a
domain gap in our dataset in Figure 2 by showing how, on average, within-domain performance of
our object detection models was far greater than cross-domain performance for each test domain.

Figure 2: Baseline experimental results demonstrating evidence of the domain gap. The gap in per-
formance between within-domain and cross-domain settings is shown in this figure as the distance
between the red and blue points (and further described in section 3)

Two approaches to domain adaptation in remote sensing imagery are transforming the images in
a dataset to lessen the differences between the training and testing domains or supplementing the
dataset with synthetic imagery that helps to close that gap (e.g., Synthinel-1 [6], SIMPL [7], [8]).
Color based transformations leave image content unchanged but vary the color of pixels in an image,
mapping pixels of each color to a new value. For example, histogram equalization adjusts image
pixel intensity values such that they follow a uniform distribution to standardize image appearance
regardless of domain. In contrast, generative methods create synthetic images that may modify both
the pixel values and the information content of an image. Examples of generative methods that have
been applied for domain adaptation include CyCADA [9] and CycleGAN [10]. We compare our
approach to a selection of these methods.

We propose a domain adaptation method based on generating synthetic overhead images designed
to require few labeled examples. Our technique takes advantage of unlabeled overhead images to
reduce the number of labeled examples required. Unlabeled images are often easily acquirable
through public datasets such as the National Agriculture Imagery Program (NAIP) [11]. Our exper-
iments show the potential of our technique to improve downstream model performance as compared
to other domain adaptation techniques in this space – especially in situations with limited training
data and when applying a model to new geographies.

2 Methodology

2.1 Experimental dataset creation

To test our domain adaptation technique, we created a dataset of overhead images containing wind
turbines from three distinct geographic domains. Wind turbines were selected as an example of
energy infrastructure because they are relatively homogeneous in appearance (minimizing intra-
class variance), found in a diverse variety of geographies and contexts (mountains, fields, etc.), and
are still relatively rare geospatially.
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We collected images from the Northwest, Southwest, and Eastern Midwest regions of the United
States. These regions were chosen with the intention of creating visually distinct domains, as shown
in Figure 1. Wind turbine coordinates were sampled from the U.S. Wind Turbine Database [12].
Overhead images were collected from the National Agriculture Imagery Program dataset (NAIP)
[11] using Google Earth Engine [13]. Each image was 608x608 pixels with a resolution of 1m/pixel.
For each domain we also included unlabeled (background) images, which are visually similar to the
labeled examples but do not contain wind turbines. The final dataset contained 988 labeled images
with turbines and 1,015 background images. See Appendix A for further details on data collection.

2.2 Generating synthetic blended images

Our image generation process aimed to produce synthetic images that were similar to real labeled
data from the target domain. We utilized the GP-GAN image blending model [14] to blend unlabeled
target domain data together with source domain target objects. This process consisted of four steps,
as shown in Figure 3: (1) sample a random background image (without wind turbines) from the
target domain, (2) sample turbines from the source domain, (3) randomize the location, orientation,
and size of the objects on a blank canvas, and (4) blend the background image and the source domain
turbines together using GP-GAN.

Figure 3: Synthetic image generation process

This process is customizable with hyperparameters such as the object density, spacing, and size. For
our experiments, we ensured that the wind turbines never overlapped and that the object density was
set to the 90th percentile of object density from the source domain.

2.3 Object detection model and evaluation metrics

We used YOLOv3 [15] as our wind turbine object detection model. With the model, we used
mixed batch training to ensure a fixed 7-to-1 ratio of baseline-to-supplementary data in each batch,
increasing our control over the influence of the supplemental data within each experiment. We
evaluated model performance using average precision (AP).

3 Results and Discussion

Our experiments simulated detecting a rare energy object: we assumed minimal access to labeled
images from the source domain and no labels from the target domain. The experiments compared
the various domain adaptation techniques by investigating whether the addition of different types
of supplementary imagery (including our synthetic images) could improve wind turbine detection
performance across domains.
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The baseline experiment was trained on 100 labeled source domain images and tested on 100 la-
beled target domain images. Each domain adaptation technique was tested by training on 100 la-
beled source domain images supplemented with an additional 100 images from a domain adaptation
technique and tested on the same 100 labeled target domain images (see Appendix B, Figure 6).
We ran this for our synthetic image blending technique, introduced here, and compared it to other
domain adaptation techniques including Histogram Equalization, Histogram Matching, GrayWorld,
CyCADA, and CycleGAN. Each experiment tested all of the 9 possible source/target domain pair-
ings across the three domains: Northwest, Eastern Midwest, and Southwest. For each pair of do-
mains, 5 YOLOv3 models were trained to estimate model variance. All models were trained for 300
epochs with a batch size of 8. The results of these experiments are shown in Figure 4.

We added to the above baseline and domain adaptation techniques two additional experimental
points of comparison that were modifications of the baseline experiment. First, to estimate an up-
per bound on performance to training with 100 supplemental images, we supplemented the baseline
training process with 100 additional real images from the target domain. Second, to explore if simply
adding target domain imagery improved performance, regardless of the presence of wind turbines
in the imagery, we supplemented the baseline experiment with 100 target domain background im-
ages (unlabeled target domain images without wind turbines present used for image blending). The
results of these two experiments are shown in Figure 4 are shown in light grey.

These experiments collectively tested whether adding each set of supplemental imagery improved
cross-domain model performance when faced with highly-limited training data availability. The re-
sults indicate that adding synthetically blended imagery is able to produce the greatest improvement
in average precision of the techniques compared in this study. On average, our synthetic image
blending technique outperformed baseline trials by 8.23% in cross-domain pairings and 2.21% in
within-domain pairings. Additional exploration of these results can be found in Appendix C and D.
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Figure 4: Experimental results comparing average cross-domain AP ± 2 std. dev.

4 Conclusions

The mapping of climate relevant infrastructure can improve the assessment of key resources, but
global applications have been impeded by the challenges of geographic domain adaptation and a
lack of training data. Our experiments provide evidence that supplementing training data with syn-
thetically blended imagery can improve domain adaptation while requiring minimal time, no propri-
etary software, and few object examples. This may aid in scaling up mapping to larger applications.
Future work could further refine our synthetic imagery quality by adjusting the density or size of
objects blended or by validating our method on different energy infrastructures or domains.
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A Dataset creation

Our wind turbine imagery dataset consists of overhead imagery from the Northwest, Southwest, and
Eastern Midwest domains of the United States shown above in Figure 5. Images were created for
each domain by:

1. Clustering the U.S. Wind Turbine Database coordinates of each region via DBSCAN
2. Selecting subsets of candidate test coordinates and training coordinates using stratified ran-

dom sampling to ensure representative sampling within each region
3. Capturing 608m x 608m overhead images using Google Earth Engine’s publicly available

NAIP dataset
4. Shifting the coordinate center of each image by 75 meters to ensure that a turbine was not

directly in the center of the image each time
5. Each image was quality checked to ensure that wind turbines were present in the image and

that the training and test datasets were mutually exclusive

Eastern Midwest

Southwest

Northwest

Figure 5: Sample images and corresponding locations from the Northwest, Southwest, and Eastern
Midwest regions of the wind turbine dataset

To collect the background images without wind turbines (to which wind turbines could be added
through blending with GP-GAN), overhead images were captured at a small distance between 4km
and 6km away from a known turbine location. These images were manually inspected to ensure
that no wind turbines were present. The close distance ensured visual similarity to the other target
domain images.

B Experimental setup

Code for recreating our experiments and results can be found at:
https://github.com/energydatalab/closing-the-domain-gap. Our dataset can be downloaded at:
https://zenodo.org/record/7385227.Y4hf–zMKw5.
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Figure 6 shows our general experimental setup: (1) a baseline without 100 source domain images
and no supplemental images tested on a dataset of target domain images and (2) each experimental
condition with the same 100 source domain images supplemented with images from each experi-
mental condition, tested on the same target domain images.

Figure 6: Experimental setup types

For the experiments which contained a supplement to the training set (type 2), we ensured the Yolov3
models trained with a mixed batch 7-to-1 ratio of train and supplement image in each minibatch.
This ratio was chosen as the lowest possible ratio in a minibatch size of 8 that would still allow
the consistent influence of the supplemental imagery. Each epoch consisted of a pass through 200
images at the given train-to-supplement ratio.

C Baseline and synthetic results

The full baseline results in Table 1 highlight the domain gap present in the dataset. Overall, baseline
within-domain trials achieved an average AP of 0.901 while baseline cross-domain trials achieved
an average AP of 0.791. For each domain pair, the addition of synthetic images improved AP. This
was especially true in a cross-domain context: on average, synthetic cross-domain trials achieved a
0.065 higher AP than baseline cross-domain trials, while synthetic within-domain trials achieved a
0.020 higher AP than baseline within-domain trials.

Table 1: Baseline and summary synthetic experiment results compared via average trial AP.

Source Domain Target Domain Baseline ± 2 SD Synthetic ± 2 SD
EM

EM
0.941 ±0.029 0.964 ±0.024

NW 0.894 ±0.025 0.936 ±0.022
SW 0.647 ±0.055 0.800 ±0.026
EM

NW
0.905 ±0.058 0.930 ±0.037

NW 0.960 ±0.019 0.963 ±0.007
SW 0.739 ±0.050 0.772 ±0.032
EM

SW
0.742 ±0.067 0.836 ±0.049

NW 0.818 ±0.028 0.862 ±0.041
SW 0.802 ±0.043 0.837 ±0.030

Within-Domain Average 0.901 ±0.031 0.921 ±0.020
Cross-Domain Average 0.791 ±0.047 0.856 ±0.035
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D Full experiment results

In addition to AP, we measured experiment results using the percentage Closure of Domain Gap
(CDG) [8]. CDG measures the percent closure of the gap between the within-domain and cross-
domain trials that the current experiment recovers:

CDG =
AP (cross-domain experiment)−AP (cross-domain baseline)
AP (within-domain baseline)−AP (cross-domain baseline)

(1)

A full comparison of techniques using the CDG metric as well as both cross-domain and within-
domain AP are shown in Table 2. Our synthetic imagery achieved the highest cross-domain and
within-domain AP out of any experiment except the estimated upper bound experiment. Addition-
ally, our synthetic imagery achieved the highest closure of the domain gap out of any technique
compared in this study.

Table 2: Comparison of synthetic imagery to alternative domain adaptation techniques. Outcomes
measured in average trial AP and split between the cross-domain and within-domain trials.

Experiment Cross-domain Within-domain CDG
Synthetic 0.856 0.921 60.2%
CyCADA 0.752 0.877 -39.2%

CycleGAN 0.756 0.889 -30.7%
GrayWorld 0.769 0.891 -15.1%

Histogram Matching 0.796 0.906 13.1%
Histogram Equalization 0.803 0.909 16.7%
Estimated Upper Bound 0.931 0.938 139.4%

Baseline 0.791 0.901 0.0%
Baseline + Background 0.778 0.903 -16.3%
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E Domain adaptation technique examples

Figure 7 shows examples of each of the domain adaptation techniques for generating supplemental
training images that were included in this study. The top row shows the original real images upon
which each of the subsequent images was based to give a qualitative comparison of each technique.

Figure 7: Examples of each domain adaptation technique
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F Background image and GP-GAN synthetic image examples

Figure 8 shows examples of images to which wind turbines were added through GP-GAN blending.

Background
Images

GP-Gan 
Synthetic Images

Figure 8: Examples of background overhead images (left) and the blended synthetic images with
added wind turbines (right)
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