
Exploring Randomly Wired Neural Networks for
Climate Model Emulation

William Yik
Harvey Mudd College

Claremont, CA
wyik@hmc.edu

Sam Silva
Dept. of Earth Sciences

Dept. of Civil and Environmental Engr.
University of Southern California

Los Angeles, CA
samsilva@usc.edu

Andrew Geiss
Pacific Northwest National Laboratory

Richland, WA
andrew.geiss@pnnl.gov

Duncan Watson-Parris
Atmospheric, Oceanic and Planetary Physics

Department of Physics
University of Oxford Oxford, UK

duncan.watson-parris@physics.ox.ac.uk

Abstract

Exploring the climate impacts of various anthropogenic emissions scenarios is
key to making informed decisions for climate change mitigation and adaptation.
State-of-the-art Earth system models can provide detailed insight into these impacts,
but have a large associated computational cost on a per-scenario basis. This large
computational burden has driven recent interest in developing cheap machine
learning models for the task of climate model emulation. In this manuscript, we
explore the efficacy of randomly wired neural networks for this task. We describe
how they can be constructed and compare them to their standard feedforward
counterparts using the ClimateBench dataset. Specifically, we replace the dense
layers in multilayer perceptrons, convolutional neural networks, and convolutional
long short-term memory networks with randomly wired ones and assess the impact
on model performance for models with 1 million and 10 million parameters. We
find average performance improvements of 4.2% across model complexities and
prediction tasks, with substantial performance improvements of up to 16.4% in
some cases. Furthermore, we find no significant difference in prediction speed
between networks with standard feedforward dense layers and those with randomly
wired layers. These findings indicate that randomly wired neural networks may be
suitable direct replacements for traditional dense layers in many standard models.

1 Introduction

Characterizing the response of the Earth system to future emissions scenarios is key to informing
climate change mitigation and adaptation strategies. Modern Earth system models (ESMs) are
incredibly useful tools for this task, providing detailed climate projections far into the future for
scenario-based analysis. However, as the process complexity and spatial resolution of such ESMs
increases, so does their computational cost [1]. Consequently, it becomes impractical to explore
a wide range of possible emissions scenarios with modern ESMs, limiting their applicability to a
restricted set of future scenarios [2]. To address this large computational cost, the climate modeling
research community frequently makes use of emulators, a set of computational tools that aim to
approximate the complex relationships in a full ESM at a fraction of the computational cost. Recent
developments have demonstrated the considerable promise of machine learning (ML) techniques such

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.



as linear models [3, 4, 5], tree based methods [6, 7, 8], and various implementations of neural networks
[9, 10, 11, 12] in these emulation tasks for both individual model components [13, 8, 14, 15, 16]
and entire ESM predictions [17, 18, 5, 19]. ML models often enable accurate predictions at greatly
reduced computational cost relative to full ESMs. This is broadly indicative of a very large potential
design space for ML model architectures. Here, we investigate so-called "randomly wired neural
networks" in an effort to further explore this architecture design space for climate model emulation.
Randomly wired neural networks are a special class of neural network where components are
connected in a random, rather than structured, manner. This is in direct contrast to widely-used fully
connected artificial neural networks, where each component is connected only to the preceding and
following components in the neural network. Randomly wired neural networks have demonstrated
skill in a variety of domains, including handwriting recognition [20], internet network attack detection
[21], and aerosol optics prediction [22]. Random wiring is a form of neural architecture search (NAS)
[23] that searches a more complete space of connectivity patterns than other common NAS strategies
[24] to identify high-performing model architectures.

In this work, we evaluate the suitability of randomly wired neural networks for climate emula-
tion using the ClimateBench benchmarking dataset. We specifically investigate the use of random
wiring to predict temperature and precipitation statistics. To that end, we compare the performance
of random wiring against fully connected counterparts within three types of neural network mod-
els covering a wide range of complexities: multilayer perceptrons (MLPs), convolutional neural
networks (CNNs), and convolutional long short-term memory networks (CNN-LSTMs). We find
that random network wiring shows competitive results across model architectures and prediction
tasks with average performance improvements of 4.2%, up to 16.4% in some cases. Furthermore,
we find that randomly wired neural networks take no longer to make predictions than their stan-
dard fully connected counterparts. Our work indicates that in many cases, random wiring can
serve as direct replacements for traditional feedforward neural networks to improve predictive skill.

In

ReLU

Dense

+
×w0

×w1

×w2

Figure 1: Graph representation of a six layer Rand-
Dense network along with its node operation in
the inset. White circles represent hidden dense
layers and their activation functions. The brown
circle represents the output layer. Lastly, the upper
rectangular block represents neural network layers
preceding the dense layers. In this case, it is a
simple input layer which performs no operation,
but other choices such as a convolutional block are
possible (see Section 4).

2 Randomly
Wired Neural Networks

In our random networks, as well as those of
Xie et al. [23] and Geiss et al. [22], data ten-
sors flow through the network in a feedforward
manner similar to standard multilayer percep-
trons (MLPs). However, unlike the dense layers
in MLPs, dense layers in our random networks
receive inputs from any number of preceding
layers and pass their outputs to any number of
subsequent layers. That is, there may be “skip
connections" between dense layers. An example
of this class of random neural network, which
we will henceforth refer to as RandDense net-
works, is illustrated in Figure 1. Here, each layer
is represented as a node in a graph and edges
connect nodes following the flow of tensors in
a given connectivity pattern.

In the style of Xie et al. [23], our RandDense
networks have several key differences with stan-
dard networks beyond their connectivity pat-
terns. First, since RandDense nodes/layers may
have multiple inbound edges, unlike the nodes
of an MLP which only have one, every node
of a RandDense network begins with an aggre-
gation of incoming tensors via a weighted sum
with learnable, positive weights. Similarly, our
RandDense nodes may have multiple outbound
edges, which send out copies of their output,

2



while MLPs only have one. Lastly, our random networks apply a ReLU activation function before
the dense layer so that the outbound tensor may have both positive and negative values, preventing
weighted sums at nodes with high input degree from becoming too large [23]. Additional imple-
mentation details of our RandDense networks is included in Appendix A.1, including the network
connectivity generation process and the input/output nodes.

3 Data

Standard benchmarks are a valuable tool for the intercomparison of ML methods. Here, we use
the ClimateBench dataset, along with its associated evalution criteria and metrics as a standardized
framework for objectively evaluating ML-driven climate model emulators [18]. The dataset contains
four main anthropogenic forcing agents as model inputs: carbon dioxide (CO2), sulfur dioxide (SO2),
black carbon (BC), and methane (CH4). While SO2 and BC are provided as annual mean spatial
distributions across a 96 × 144 global grid, the longer lived and well mixed CO2 and CH4 inputs
are provided as annual global total concentration and global average emissions, respectively. These
four inputs are a subset of the input data used drive the Norwegian Earth System Model version 2
(NorESM2) [25].

The ClimateBench task is to predict the annual mean surface air temperature (TAS), annual mean
diurnal temperature range (DTR), annual mean total precipitation (PR), and 90th percentile of daily
precipitation (PR90) as predicted by NorESM2. For the years 2015-2100, each of these variables are
provided as spatial distributions across the same 96× 144 grid as BC and SO2. Our models are each
trained to predict one of TAS, DTR, PR, or PR90. We use the first two years of every decade from
every training set experiment as validation data, train for 100 epochs with an early stopping patience
of 10, and otherwise follow the ClimateBench model training framework [18].

4 Experiments

We perform experiments three baseline neural network models: a standard MLP, convolutional neural
network (CNN), and a convolutional long short-term memory (CNN-LSTM). These architectures
span a range of model complexity and are meant to represent realistic deep learning architectures
appropriate for climate emulation tasks. We compare each model’s performance with sequentially
connected dense layers to performance using a RandDense network on the ClimateBench task (see
Section 3). We evaluate standard and RandDense networks with either 1- or 10-million parameters,
and in each case train 50 models with layer counts ranging from 2-10, and report maximum and mean
performance across the ensemble. All networks are evaluated using the “total RMSE" metric defined
in the ClimateBench framework [18]. Additional implementation details for each model architecture
type can be found in Appendix A.2.

Table 1: Best RMSE performance for each model class across all generated models. Lower is better,
and the better RMSE between the standard and RandDense models is bolded.

TAS DTR PR PR90

MLP Standard 1.928 15.62 4.663 5.651
RandDense 1.612 14.67 4.472 5.206

CNN Standard 3.350 23.15 9.235 10.30
RandDense 3.353 22.92 8.681 9.964

CNN-LSTM Standard 0.262 11.85 2.861 3.880
RandDense 0.263 11.66 2.775 3.810

While mean performance comparisons varied for random models and standard models, the best
performing RandDense models were almost always better at predicting their respective ClimateBench
variable than the best performing standard models. A summary of these best performance results
is shown in Table 1 with additional results in Appendix A.3. The best standard dense networks
only outperformed the best RandDense models in two instances, both of which show very minor
performance differences: the TAS prediction task for the CNN and CNN-LSTM architectures. In

3



general, the performance gains for randomization within each model architecture are more stark
for the precipitation variables (PR and PR90). The skip connections in our RandDense networks
have previously been shown to be helpful for non-linear problems [26], and therefore may provide
more benefit in modeling precipitation, which scales non-linearly with the emulator inputs [27]. On
average, the best RandDense networks performed 4.2% better than the best standard networks, with
performance improvements of up to 16.4% in the MLP baseline TAS prediction task. Furthermore,
we found no statistically significant difference between the run times of standard and RandDense
models, indicating that they are suitable replacements for standard models in climate model emulation
tasks.

The CNN-LSTM RandDense model performed best overall. Figure 2 shows the global distribution of
the mean deviations of its best predictions from the ground truth over the test set. In most locations
the mean deviations are statistically insignificant (p > 0.05 using a two-sided independent sample
t-test) and are shown as white in the plot. Furthermore, the significant errors are relatively small. For
example, the mean prediction errors for TAS are almost all within than 0.3 K (generally less than
12%). Global distribution plots of mean deviation for the other model architectures may be found in
Appendix A.3.

1.0 0.5 0.0 0.5 1.0
Temperature (K)

0.4 0.2 0.0 0.2 0.4
Diurnal temperature range (K)

1.0 0.5 0.0 0.5 1.0
Precipitation (mm/day)

2 1 0 1 2
Extreme precipitation (mm/day)

Figure 2: Mean differences between ClimateBench NorESM2 simulated target variables and the best
performing CNN-LSTM emulators averaged over the test scenario between 2080-2100. Statistically
insignificant differences (p > 0.05) are masked.

5 Conclusion

Motivated by the promise of randomly wired neural networks in related applications, we explored
random wirings between dense layers of neural networks for the task of climate model emulation.
We replaced the traditional feedforward dense layers in MLPs, CNNs, and CNN-LSTMs with our
randomly wired networks, coined “RandDense” networks, and conducted performance experiments
using the ClimateBench dataset. Across several architectures, model complexities, and predictands,
we found performance benefits for models containing randomly wired layers. Our work indicates that
in many cases, standard feedforward networks may be effectively replaced with RandDense networks
to achieve better performance at no additional computational cost.

4



References
[1] Matthew Collins, Richard E Chandler, Peter M Cox, John M Huthnance, Jonathan Rougier, and David B

Stephenson. Quantifying future climate change. Nature Climate Change, 2(6):403–409, 2012.

[2] Brian C O’Neill, Claudia Tebaldi, Detlef P Van Vuuren, Veronika Eyring, Pierre Friedlingstein, George
Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, et al. The scenario model
intercomparison project (scenariomip) for cmip6. Geoscientific Model Development, 9(9):3461–3482,
2016.

[3] Stephan Rasp. Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and lorenz 96 case study (v1. 0). Geoscientific Model Development,
13(5):2185–2196, 2020.

[4] Sam J Silva, Colette L Heald, and Alex B Guenther. Development of a reduced-complexity plant canopy
physics surrogate model for use in chemical transport models: A case study with geos-chem v12. 3.0.
Geoscientific Model Development, 13(6):2569–2585, 2020.

[5] Laura A Mansfield, Peer J Nowack, Matt Kasoar, Richard G Everitt, William J Collins, and Apostolos
Voulgarakis. Predicting global patterns of long-term climate change from short-term simulations using
machine learning. npj Climate and Atmospheric Science, 3(1):1–9, 2020.

[6] Janni Yuval and Paul A O’Gorman. Stable machine-learning parameterization of subgrid processes for
climate modeling at a range of resolutions. Nature communications, 11(1):1–10, 2020.

[7] Janni Yuval, Paul A O’Gorman, and Chris N Hill. Use of neural networks for stable, accurate and physically
consistent parameterization of subgrid atmospheric processes with good performance at reduced precision.
Geophysical Research Letters, 48(6):e2020GL091363, 2021.

[8] Sam J Silva, Po-Lun Ma, Joseph C Hardin, and Daniel Rothenberg. Physically regularized machine
learning emulators of aerosol activation. Geoscientific Model Development, 14(5):3067–3077, 2021.

[9] Ilan Price and Stephan Rasp. Increasing the accuracy and resolution of precipitation forecasts using deep
generative models. In International Conference on Artificial Intelligence and Statistics, pages 10555–10571.
PMLR, 2022.

[10] Oliver Watt-Meyer, Noah D Brenowitz, Spencer K Clark, Brian Henn, Anna Kwa, Jeremy McGibbon,
W Andre Perkins, and Christopher S Bretherton. Correcting weather and climate models by machine
learning nudged historical simulations. Geophysical Research Letters, 48(15):e2021GL092555, 2021.

[11] Vladimir M Krasnopolsky, Michael S Fox-Rabinovitz, and Dmitry V Chalikov. New approach to calculation
of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a
climate model. Monthly Weather Review, 133(5):1370–1383, 2005.

[12] Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet pretrained on
climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems, 13
(2):e2020MS002405, 2021.

[13] Axel Seifert and Stephan Rasp. Potential and limitations of machine learning for modeling warm-rain
cloud microphysical processes. Journal of Advances in Modeling Earth Systems, 12(12):e2020MS002301,
2020.

[14] Griffin Mooers, Michael Pritchard, Tom Beucler, Jordan Ott, Galen Yacalis, Pierre Baldi, and Pierre
Gentine. Assessing the potential of deep learning for emulating cloud superparameterization in climate
models with real-geography boundary conditions. Journal of Advances in Modeling Earth Systems, 13(5):
e2020MS002385, 2021.

[15] Matthew Chantry, Sam Hatfield, Peter Dueben, Inna Polichtchouk, and Tim Palmer. Machine learning
emulation of gravity wave drag in numerical weather forecasting. Journal of Advances in Modeling Earth
Systems, 13(7):e2021MS002477, 2021.

[16] Chang Suk Lee, Eunha Sohn, Jun Dong Park, and Jae-Dong Jang. Estimation of soil moisture using deep
learning based on satellite data: A case study of south korea. GIScience & Remote Sensing, 56(1):43–67,
2019.

[17] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils Thuerey.
Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling
Earth Systems, 12(11):e2020MS002203, 2020.

5



[18] Duncan Watson-Parris, Yuhan Rao, Dirk Olivié, Øyvind Seland, Peer J Nowack, Gustau Camps-Valls,
Philip Stier, Shahine Bouabid, Maura Dewey, Emilie Fons, and et al. Climatebench: A benchmark
dataset for data-driven climate projections. Earth and Space Science Open Archive, page 36, 2021. doi:
10.1002/essoar.10509765.1. URL https://doi.org/10.1002/essoar.10509765.1.

[19] Lea Beusch, Lukas Gudmundsson, and Sonia I Seneviratne. Emulating earth system model temperatures
with mesmer: from global mean temperature trajectories to grid-point-level realizations on land. Earth
System Dynamics, 11(1):139–159, 2020.

[20] Erol Gelenbe and Yongha Yin. Deep learning with random neural networks. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 1633–1638. IEEE, 2016.

[21] Olivier Brun, Yonghua Yin, Erol Gelenbe, Y Murat Kadioglu, Javier Augusto-Gonzalez, and Manuel
Ramos. Deep learning with dense random neural networks for detecting attacks against iot-connected
home environments. In International ISCIS Security Workshop, pages 79–89. Springer, Cham, 2018.

[22] Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C Hardin. Emulating aerosol optics with
randomly generated neural networks. EGUsphere, pages 1–21, 2022.

[23] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1284–1293, 2019.

[24] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019.

[25] Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff,
Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, et al. Overview of the
norwegian earth system model (noresm2) and key climate response of cmip6 deck, historical, and scenario
simulations. Geoscientific Model Development, 13(12):6165–6200, 2020.

[26] A Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. arXiv preprint arXiv:1701.09175,
2017.

[27] Maria Fernanda Cabré, SA Solman, and MN Nuñez. Creating regional climate change scenarios over
southern south america for the 2020’s and 2050’s using the pattern scaling technique: validity and
limitations. Climatic Change, 98(3):449–469, 2010.

[28] Stephan Rasp, Michael S Pritchard, and Pierre Gentine. Deep learning to represent subgrid processes in
climate models. Proceedings of the National Academy of Sciences, 115(39):9684–9689, 2018.

[29] Duong Tran Anh, Song P Van, Thanh D Dang, and Long P Hoang. Downscaling rainfall using deep
learning long short-term memory and feedforward neural network. International Journal of Climatology,
39(10):4170–4188, 2019.

[30] MA Ghorbani, Ravinesh C Deo, Zaher Mundher Yaseen, Mahsa H Kashani, and Babak Mohammadi. Pan
evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (mlp-ffa) model: case study
in north iran. Theoretical and applied climatology, 133(3):1119–1131, 2018.

[31] Evangelos Rozos, Panayiotis Dimitriadis, Katerina Mazi, and Antonis D Koussis. A multilayer perceptron
model for stochastic synthesis. Hydrology, 8(2):67, 2021.

[32] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning
systems, 2021.

[33] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[34] Kevin Trebing, Tomasz Staǹczyk, and Siamak Mehrkanoon. Smaat-unet: Precipitation nowcasting using a
small attention-unet architecture. Pattern Recognition Letters, 145:178–186, 2021.

[35] Arnaud Mounier, Laure Raynaud, Lucie Rottner, Matthieu Plu, Philippe Arbogast, Michaël Kreitz, Léo
Mignan, and Benoît Touzé. Detection of bow echoes in kilometer-scale forecasts using a convolutional
neural network. Artificial Intelligence for the Earth Systems, pages 1–66, 2022.

[36] Cheolhee Yoo, Daehyeon Han, Jungho Im, and Benjamin Bechtel. Comparison between convolutional
neural networks and random forest for local climate zone classification in mega urban areas using landsat
images. ISPRS Journal of Photogrammetry and Remote Sensing, 157:155–170, 2019.

6

https://doi.org/10.1002/essoar.10509765.1


[37] Anton Nikolaev, Ingo Richter, and Peter Sadowski. Deep learning for climate models of the atlantic ocean.
In AAAI Spring Symposium: MLPS, 2020, 2020.

[38] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization for learning kernels. arXiv
preprint arXiv:1205.2653, 2012.

[39] AA Ahmed, Ravinesh C Deo, Afshin Ghahramani, Nawin Raj, Qi Feng, Zhenliang Yin, and Linshan Yang.
Lstm integrated with boruta-random forest optimiser for soil moisture estimation under rcp4. 5 and rcp8. 5
global warming scenarios. Stochastic Environmental Research and Risk Assessment, 35(9):1851–1881,
2021.

[40] Moyang Liu, Yingchun Huang, Zhijia Li, Bingxing Tong, Zhentao Liu, Mingkun Sun, Feiqing Jiang, and
Hanchen Zhang. The applicability of lstm-knn model for real-time flood forecasting in different climate
zones in china. Water, 12(2):440, 2020.

7



A Supplemental Material

A.1 RandDense Implementation Details

Network connectivity. Since the layers within our RandDense networks are randomly wired, the first step in
generating such a network is determining which layers are connected to which, or the network connectivity.
Following Geiss et al. [22], given a fixed number of layers n, we randomly select the number of neurons per
dense layer and generate an adjacency matrix representing the connections between layers in our RandDense
network. Since our RandDense networks are still feedforward in nature, several constraints may be placed on
the adjacency matrix. If we let each row represent a layer, and column values represent connections (inbound
edges) from previous layers, then the adjacency matrix must be lower triangular. Thus, there are n(n+ 1)/2
possible connections for an n layer random network. The corresponding adjacency matrices for the network
in Figure 1 and a standard MLP are shown in Figure 3. Some of these connectivity patterns may have layers
without an inbound or outbound tensor. Thus, to ensure the network is valid, we follow Geiss et al. [22] and
iterate through each row and column, randomly activating an edge in each row/column if it has no active edges.

In


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(a) A six layer MLP along with its corre-
sponding adjacency matrix.

In


1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
0 0 1 1 1 1



(b) The six layer RandDense network from 1
along with its corresponding adjacency ma-
trix.

Figure 3: Graph representations of a six layer MLP and six layer RandDense network shown side-by-
side with their respective adjacency matrices.

Node operations. Nodes in a RandDense network may have multiple inbound or outbound edges, unlike the
nodes of an MLP which only have one of each (see Figure 3). To treat this difference, we must define a new
operation that occurs at every node.

The node operation of our RandDense networks begins with an aggregation of the incoming tensors. If a node has
more than one inbound edge, we follow Xie et al. [23] and aggregate the incoming tensors via a weighted sum
with learnable, positive weights. The weights are kept positive by applying the sigmoid function. Exclusively
summing inbound tensors instead of concatenating them [22] requires a consistent number of neurons per
layer throughout the network, but avoids extremely large input tensors that might occur using concatenation.
Additionally, in the style of Xie et al. [23], our random networks have the ReLU activation function before the
dense layer so that the outbound tensor can contain both positive and negative values. This avoids extremely
large weighted sums when the number of inputs to a given layer is high. Figure 4 illustrates the differences
between a node, which contains the dense layer and its activation, in a standard MLP and our random networks.
Notice that a node in the graph representation of an MLP in Figure 4a contains a dense layer followed by ReLU
activation, while a node of the RandDense network in Figure 4b contains an weighted summation followed by
ReLU activation then the dense layer.

Input and output nodes. Like the hidden layers of a RandDense network, the first and last layers of such a
network are different than those of a traditional MLP. In particular, the first (input) node may be connected with
multiple other nodes downstream instead of just one, and the last (output) node may have multiple inbound
edges instead of just one. As such, we make a few minor changes to the network to account for these differences.

We start with the input node, the first node immediately following the input layer. If it is connected to multiple
downstream nodes, it will simply send out a identical copy of its outbound tensor along each outbound edge. We
must also carefully define the input node’s internal node operation. Similarly to Xie et al. [23] our general node

8



In

Dense

ReLU

(a) An MLP network with six hidden layers,
along with its node operation. As is typi-
cal in MLP networks, the activation function,
ReLU in this case, follows the dense layer.
Furthermore, each node only has one input
and output edge. Thus, unlike the RandDense
network, there is no aggregation by weighted
sum.

In

ReLU

Dense

+
×w0

×w1

×w2

(b) A RandDense network with six hidden
layers, along with its node operation. Ag-
gregation from three previous input nodes
is done via weighted sum with weights w0,
w1, and w2. The summation is followed by
ReLU activation and the dense layer. Lastly,
two identical copies of the output are sent to
two separate nodes downstream.

Figure 4: Graph representations of a six layer MLP and six layer RandDense network shown side-
by-side with their respective node operations. White circles represent hidden dense layers and their
activation functions. Brown circles represent the output layer discussed in Section 2. Lastly, the
upper rectangular block represents neural network layers preceding the dense layers. In this case, it is
a simple input layer which performs no operation, but other choices such as a convolutional block are
possible (see Section A.2).

operation discussed previously (dense layer followed by ReLU) is the same for every node in the graph. That
is, each dense layer will have the same number of neurons, which is randomly chosen. However, this number
of neurons is likely not the same as the required input and output shape of the network. As such, we make a
few minor changes to the network so that it is valid. First, the node immediately following the input layer will
contain a number of neurons equal to the difference between the randomly selected layer size and the input size.
For example, if the randomly selected layer size is 100 and the input size is 12, the first randomly wired node
following the input layer will contain a dense layer of size 88. Then, this dense layer is concatenated with the
input to create a layer of the correct size. This is done so that any nodes downstream of the first node may still
have direct access to the input [22].

For the output node which may have multiple inbound edges, we simply take the average of all inbound tensors
and send this value to a final dense layer of the desired output size. This final output node, which is colored
brown in Figure 4b, has linear activation instead of ReLU so that both positive and negative values may be
output.

A.2 Experimental Setup

In this section we provide additional implementation details for each model architecture (MLP, CNN, and
CNN-LSTM) and further discuss our experimental setup.

MLP. A standard MLP model is the most common and basic type of neural network which only contains dense
layers. They have been extensively used in climate modelling tasks such as subgrid process representation [28],

9



rainfall downscaling [29], longwave raditaion emulation [11], and evaporation prediction [30], and stochastic
synthesis in hydrology simulations [31].

We begin with the first parameter limit of 1 million. We generate MLP models for a given number of hidden
layers by randomly selecting a fixed layer size for all of the hidden layers such that the network’s parameter
count is 1 million ±10%. We generate 50 such MLP models with 2 hidden dense layers, 50 MLPs with 3 hidden
dense layers, and so on up to 10 hidden dense layers. This gives 450 MLP models. The process is repeated
for a parameter limit of 10 million, yielding a total of 900 MLPs. For the RandDense comparison networks,
we repeat a similar process. Using the network generation method described in Section 2, we generate 50
RandDense networks for 2-10 hidden layers at both the 1 million and 10 million parameter count for a total of
900 RandDense networks.

As discussed in Section 3, the inputs to the models are global CO2 and CH4, as well as 96× 144 grids of SO2

and BC. However, in MLPs each input is handled by one neuron in the input layer. As such, if we directly fed
the anthropogenic forcer inputs to the model, the input layer would be over 26,000 neurons wide. This is a
extremely high layer size, and so we follow Watson-Parris et al. [18] and perform dimensionality reduction on
the SO2 and BC inputs. Specifically, we take the first five emperical orthogonal functions (EOFs) of each to
replace their 96× 144 grids. Thus, the total input size to the MLP is 12: the first five EOFs for SO2 and BC,
plus global CO2 and CH4.

CNN. Convolutional neural networks (CNNs) have been widely adopted in object tracking and image recognition
tasks because they are able to model spacial dependencies [32, 33]. CNNs have also been recently adopted for
various weather and climate tasks such as precipitation nowcasting [34], bow echo detection [35], climate zone
classification [36] and ocean modelling [37].

Following a similar process as with the MLPs, we generate 50 MLPs and 50 RandDense networks with 2-10
hidden dense layers for both 1 and 10 million parameter counts. However, rather than being standalone networks,
these models are appended to a convolutional block. This block begins with a convolutional layer with 20 filters,
a kernal size of 3, ReLU activation, and L2 regularization [38]. The convolutional layer is followed by average
pooling with a stride of 2 and global average pooling.

Since CNNs are designed to handle images with multiple channels, we preserve the original dimensionality of
the input variables, unlike the transformation we conducted for the standalone MLP and RandDense networks in
the previous subsection. Specifically, we are able to feed the 96× 144 maps of SO2 and BC to the convolutional
network, as well as global CO2 and CH4. In order to treat the four input variables as four channels of one
96× 144 “image" of the globe, CO2 and CH4 are transformed to 96× 144 grids where each grid cell has the
same value, the global concentration of CO2 or emissions of CH4.

CNN-LSTM. Long short-term memory (LSTM) networks are a type of recurrent neural network (RNN) which
model temporal dependencies. This time-aware property makes them useful for a range of forecasting tasks such
as precipitation downscaling [29], soil moisture estimation [39], and flood forecasting [40]. For the specific task
of climate model emulation, a combined CNN-LSTM model has been shown to outperform CNN and LSTM
models in isolation [18].

As in the previous two architecture setups, for this architecture we generate 50 MLPs and 50 RandDense
networks with 2-10 hidden layers for 1 and 10 million parameter counts. These models are then appended to a
CNN-LSTM block. This block first consists of the same convolutional, average pooling, and global average
pooling layers as in the previous subsection, but with each of them time distributed (applied in the same way)
across every 10 year time window within the training samples. These time distributed layers are followed by an
LSTM with 25 units.

In order to enable the CNN-LSTM block to make time-aware predictions, the training data is transformed slightly
by slicing it into 10 year time windows. For example, two such windows might be 2015-2024 and 2016-2025.
Like the CNN model of the previous subsection, we are able to preserve the original high dimensionality
(96× 144) of the input variables.

A.3 Additional Results

In this section we present the full results of our experimental testing, including both mean and best performance
graphics. Figure 5 shows a comparison of mean RMSE performance across both parameter counts and all layer
counts we tested in our experiments. Points below the y = x line in black indicate that the RandDense networks
outperformed the MLP networks, and vice versa for points above the y = x line. The farther a point is from the
y = x line, the more drastic the performance difference. Figure 6 is similar but shows best RMSE performances.
Figures 7 and 8 show these same mean and best performance metrics for the CNN and CNN RandDense models,
with Figures 9 and 10 showing these metrics for the CNN-LSTM and CNN-LSTM RandDense models. While
mean performance for temperature variables show mixed results, in almost model type the RandDense variations
show better best performance across the temperature variables and better mean and best performance across both
precipitation variables.

10



Figure 11 shows the global distribution of the mean deviations of the best MLP/RandDense predictions from the
ground truth over the test set. Figures 12 and 13 show the same mean deviation plots for the best CNN/CNN
RandDense and CNN-LSTM/CNN-LSTM RandDense emulators, respectively.

2.2 2.6 3.0 3.4 3.8
MLP

2.2

2.6

3.0

3.4

3.8

Ra
nd

De
ns

e
TAS

20 24 28
MLP

20

24

28

Ra
nd

De
ns

e

DTR

5.5 6.5 7.5 8.5
MLP

5.5

6.5

7.5

8.5

Ra
nd

De
ns

e

PR

7 8 9 10
MLP

7

8

9

10

Ra
nd

De
ns

e

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 5: Mean RMSE of 50 MLP models vs. mean RMSE of 50 RandDense models for both TAS,
DTR, PR, and PR90. The color heatmaps to the right indicate the number of hidden layers. Errorbars
show ± standard error of the mean.

11



1.4 1.8 2.2 2.6 3.0 3.4
MLP

1.4

1.8

2.2

2.6

3.0

3.4

Ra
nd

De
ns

e

TAS

14 18 22 26
MLP

14

18

22

26

Ra
nd

De
ns

e

DTR

4 5 6 7 8
MLP

4

5

6

7

8

Ra
nd

De
ns

e

PR

5 6 7 8 9
MLP

5

6

7

8

9

Ra
nd

De
ns

e

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 6: Best RMSE of 50 MLP models vs. best RMSE of 50 RandDense models for both TAS,
DTR, PR, and PR90. The color heatmaps to the right indicate the number of hidden layers.

12



3.7 3.9 4.1 4.3 4.5
CNN

3.7

3.9

4.1

4.3

4.5

CN
N 

Ra
nd

De
ns

e

TAS

23.6 24.0 24.4 24.8
CNN

23.6

24.0

24.4

24.8

CN
N 

Ra
nd

De
ns

e

DTR

9.0 9.4 9.8
CNN

9.0

9.4

9.8

CN
N 

Ra
nd

De
ns

e

PR

10.3 10.5 10.7 10.9 11.1
CNN

10.3

10.5

10.7

10.9

11.1

CN
N 

Ra
nd

De
ns

e

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 7: Mean RMSE of 50 CNN models vs. mean RMSE of 50 CNN RandDense models for both
TAS, DTR, PR, and PR90. The color heatmaps to the right indicate the number of hidden layers.
Errorbars show ± standard error of the mean.

13



3.2 3.6 4.0 4.4
CNN

3.2

3.6

4.0

4.4

CN
N 

Ra
nd

De
ns

e

TAS

22.8 23.2 23.6 24.0 24.4
CNN

22.8

23.2

23.6

24.0

24.4

CN
N 

Ra
nd

De
ns

e

DTR

8.6 9.0 9.4 9.8
CNN

8.6

9.0

9.4

9.8

CN
N 

Ra
nd

De
ns

e

PR

9.9 10.1 10.3 10.5 10.7
CNN

9.9

10.1

10.3

10.5

10.7

CN
N 

Ra
nd

De
ns

e

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 8: Best RMSE of 50 CNN models vs. best RMSE of 50 CNN RandDense models for both
TAS, DTR, PR, and PR90. The color heatmaps to the right indicate the number of hidden layers.

14



0.25 0.35 0.45 0.55
CNN-LSTM

0.25

0.35

0.45

0.55

CN
N-

LS
TM

 R
an

dD
en

se

TAS

12 14 16 18
CNN-LSTM

12

14

16

18

CN
N-

LS
TM

 R
an

dD
en

se

DTR

3.0 3.4 3.8 4.2
CNN-LSTM

3.0

3.4

3.8

4.2

CN
N-

LS
TM

 R
an

dD
en

se

PR

3.9 4.1 4.3 4.5 4.7
CNN-LSTM

3.9

4.1

4.3

4.5

4.7

CN
N-

LS
TM

 R
an

dD
en

se

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 9: Mean RMSE of 50 CNN-LSTM models vs. mean RMSE of 50 CNN-LSTM RandDense
models for both TAS, DTR, PR, and PR90. The color heatmaps to the right indicate the number of
hidden layers. Errorbars show ± standard error of the mean.

15



0.26 0.27 0.28 0.29
CNN-LSTM

0.26

0.27

0.28

0.29

CN
N-

LS
TM

 R
an

dD
en

se

TAS

11.6 12.0 12.4 12.8
CNN-LSTM

11.6

12.0

12.4

12.8

CN
N-

LS
TM

 R
an

dD
en

se

DTR

2.7 2.9 3.1 3.3
CNN-LSTM

2.7

2.9

3.1

3.3

CN
N-

LS
TM

 R
an

dD
en

se

PR

3.8 3.9 4.0 4.1
CNN-LSTM

3.8

3.9

4.0

4.1

CN
N-

LS
TM

 R
an

dD
en

se

PR90

Layers
2

4

6

8

10
1M

Layers
2

4

6

8

10
10M

Figure 10: Best RMSE of 50 CNN-LSTM models vs. best RMSE of 50 CNN-LSTM RandDense
models for both TAS, DTR, PR, and PR90. The color heatmaps to the right indicate the number of
hidden layers.

16



MLP RandDense

1.0

0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

 (K
)

0.4

0.2

0.0

0.2

0.4

Di
ur

na
l t

em
pe

ra
tu

re
 ra

ng
e 

(K
)

1.0

0.5

0.0

0.5

1.0

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Ex
tre

m
e 

pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

Figure 11: Mean differences between ClimateBench NorESM2 simulated target variables and the
best performing MLP/RandDense emulators averaged over the test scenario between 2080-2100.
Statistically insignificant differences (p > 0.05) are masked.

17



CNN CNN RandDense

1.0

0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

 (K
)

0.4

0.2

0.0

0.2

0.4

Di
ur

na
l t

em
pe

ra
tu

re
 ra

ng
e 

(K
)

1.0

0.5

0.0

0.5

1.0

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

2

1

0

1

2
Ex

tre
m

e 
pr

ec
ip

ita
tio

n 
(m

m
/d

ay
)

Figure 12: Mean differences between ClimateBench NorESM2 simulated target variables and the best
performing CNN/CNN RandDense emulators averaged over the test scenario between 2080-2100.
Statistically insignificant differences (p > 0.05) are masked.

18



CNN-LSTM CNN-LSTM RandDense

1.0

0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

 (K
)

0.4

0.2

0.0

0.2

0.4

Di
ur

na
l t

em
pe

ra
tu

re
 ra

ng
e 

(K
)

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

2

1

0

1

2
Ex

tre
m

e 
pr

ec
ip

ita
tio

n 
(m

m
/d

ay
)

Figure 13: Mean differences between ClimateBench NorESM2 simulated target variables and the
best performing CNN-LSTM/CNN-LSTM RandDense emulators averaged over the test scenario
between 2080-2100. Statistically insignificant differences (p > 0.05) are masked.

19


	Introduction
	Randomly Wired Neural Networks
	Data
	Experiments
	Conclusion
	Supplemental Material
	RandDense Implementation Details
	Experimental Setup
	Additional Results


