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Abstract

Surface melt on the Antarctic Ice Sheet is an important climate indicator, yet the
spatial scale of modeling and observing surface melt is insufficient to capture
crucial details and understand local processes. High-resolution climate models
could provide a solution, but they are computationally expensive and require
finetuning for some model parameters. An alternative method, pioneering in
geophysics, is single-image super resolution (SR) applied on lower-resolution
model output. However, often input and output of such SR models are available on
the same, fixed spatial domain. High-resolution model simulations over Antarctica
are available only in some regions. To be able to apply an SR model elsewhere, we
propose to make the single-image SR model physics-aware, using surface albedo
and elevation as additional input. Our results show a great improvement in the
spatial transferability of the conventional SR model. Although issues with the input
satellite-derived albedo remain, adding physics awareness paves a way toward a
spatially transferable SR model for downscaling Antarctic surface melt.

1 Introduction

The Antarctic Ice Sheet (AIS) is an important, but poorly constrained contributor to global sea
level rise during the past century. The stability of ice shelves, the floating margins of the AIS, is
compromised by increased surface melt caused by (local) atmospheric warming (1; 2; 3). On the
AIS, in-situ observations are very scarce, making calibrated regional climate models (RCMs) the
backbone for estimating climatological parameters. The current spatial resolution of leading RCM
simulations is coarse for the entire AIS, typically ∼25 km (e.g., Regional Atmospheric Climate
Model, RACMO2(4); Modèle Atmosphérique Régional, MAR (5)). It hence poses a challenge for
studying surface melt features beyond the grid scale, where higher-resolution observations and/or
simulations are required. To date, some higher-resolution (∼5 km) simulations have been developed,
but they are only over some Antarctic regions (e.g., (6)) during a certain time period. It is because
generating such high-resolution RCM simulations requires substantial computational resources, and
very careful finetuning for some model parameters. In this context, a fast, affordable, and accurate
method of producing surface melt in a high spatiotemporal resolution over AIS is needed, to enhance
our understanding of the Antarctic surface melt dynamics.

As an alternative to running RCMs at a high spatial resolution, image super resolution (SR) (7) is a
competent computer vision technique to downscale the low-resolution RCM simulations. With the
development of convolutional neural networks (CNNs), Dong et al. (2016) (8) proposed SRCNN,
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which is a pioneer study applying deep learning to SR tasks. Presently, the dominant SR models
are still mostly CNN-based, e.g., SRResNet (9), and HAN (10). SRResNet can be combined with
a discriminator to build conditional GANs, like SRGAN (9) or ESRGAN (11). In parallel, there
has been a recent development to use transformers (12) in SR. Transformers are the state-of-the-art
method in natural language processing, and show promising application in computer vision tasks,
like the Swin Transformer (13; 14), including SR. In the field of geoscience, deep-learning-based SR
techniques have already been applied for downscaling precipitation (15; 16), temperature (17; 18),
wind (19), Antarctic bed topography (20), and satellite remote sensing images (21). Among these
studies, a sole generator, particularly SRResNet, is prevalently applied. Meanwhile, some studies
also applied conditional GANs (e.g., (19; 20)).

For this study, we downscaled RACMO2 surface melt from 27 km to 5.5 km over the entire AIS using
a proposed SRResNet-backboned and physics-aware network. It takes advantage that both 27 km to
5.5 km resolution surface melt simulations exist over the Antarctic Peninsula based on RACMO2, as
the training input pairs. The proposed SR model uses the SRResNet (9) as the backbone, while fed
by the high-resolution albedo and high-resolution elevation at the end of its upsampling part. The
latter part is physics-aware because surface melt is known to be strongly related causally by albedo
and elevation (by means of a solid physical relation between air temperature and elevation). Our
model shows good performance over the Antarctic Peninsula, and we demonstrate that the estimate
of surface melt estimates has significantly improved over all of Antarctica, compared to the sole
SRResNet.

2 Methods and materials

Figure 1: Overview of the proposed physics-aware SRResNet architecture.

2.1 Data sets

The Regional Atmospheric Climate Model version 2.3p2 (4), RACMO2, is a leading regional climate
model adapted for the simulation of the weather over snow and ice surfaces, for a more accurate
representation of surface mass and energy balance. The daily surface melt pairs are derived from
RACMO2 simulations at horizontal resolutions of 27 and 5.5 km. Over the entire AIS, RACMO2
simulates at a horizontal resolution of approximately 27 x 27 km2, for the period 1979–2019, forced
by ERA-Interim. Also, it has a contemporaneous 5.5 x 5.5 km2 (6), covering the Antarctica Peninsula,
which makes them ideal image pairs for training supervised SR models.

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellites provide continuous ob-
servation of the Earth’s surface. In this study, we deployed the bi-hemispherical reflectance (i.e.
white-sky albedo) for shortwave broadband from the MCD43A3 albedo product (22) archived in the
Google Earth Engine (23) as daily albedo input. Besides, the elevation information is obtained from
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the TanDEM-X 90 m digital elevation model (24). Given the high cloudiness over the Antarctic Ice
Shelves, even after upscaling the MCD43A3 albedo product to 5.5 km, there are still pixels with
missing data. Therefore, we applied spatial (2 × 2) and temporal (5-day) median filters to reduce the
influence of missing data, as well as a 3 × 3 Lee filter to reduce noise, especially in mountain areas.

2.2 Super resolution architecture: physics-aware SRResNet

In this study, we propose a physics-aware SR architecture. It has two major modules, the backbone of
SRResNet (9), and the physics-aware part with elevation and albedo as the two physical parameters.
The model architecture is illustrated in Fig. 1. The left part consisting of 16 residual blocks learns
a high-level representation of the input low-resolution inputs, then it is upsampled with the pixel
shufflers. Together with high-resolution contemporaneous static elevation and dynamic surface albedo
input through a multilayer perceptron layer, the high-resolution surface melt is predicted.

3 Results and discussion

3.1 Experiments

During the training phase of the vanilla and physics-aware SRResNet models, we first separated
the RACMO2 surface melt simulations into the training (October to June 2001—2006), validating
(entire years during 2007—2010), and testing (entire years during 2011—2019) data sets. The
boundary conditions for the division into these periods are given by RACMO2 archival procedures
and the availability of QuikSCAT observations for evaluation (25). The accuracy assessment results
in a RMSE ≈ 0.51 (0.52) mm.w.e. per day, R2 ≈ 0.89 (0.83), MAE ≈ 0.10 (0.10) mm.w.e. per
day, and Structural Similarity Index (SSIM) ≈ (0.99) 0.98 based on training (testing) data set, on
the Antarctic Peninsula. There is no significant difference between the vanilla and physics-aware
SRResNet models.

3.2 Improvement compared to a simple single image super resolution

We demonstrate the annual surface melt over the entire Antarctic in Fig. 2, in which we compare
the results from both the vanilla SRResNet and our proposed physics-aware SRResNet. On the
Antarctic Peninsula, both the vanilla and physics-aware SRResNet reconstructed high-resolution
surface patterns. The key messages are summarized below by geographical area type:

Grounding Line: Areas near the grounding lines are often characterized as high surface melt areas,
because of their relatively low albedo, and consistent katabatic winds removing high-albedo snow
(26). The physics-aware SRResNet is indeed able to simulate increased surface melt close to the
grounding line (green circle in Fig. 2).

Blue ice areas (melt-induced): Outside the Antarctic Peninsula, melt-induced blue ice areas are
experiencing cyclic melt-refreeze processes (27), making them areas of low albedo but high elevation.
Surface melt is well retrieved by physics-aware SRResNet (blue arrows in Fig. 2).

Blue ice areas (wind-induced): Unlike melt-induced blue ice areas, wind-induced blue ice areas,
especially those in high-elevated areas (red arrow in Fig. 2), are experiencing sublimation and wind-
erosion rather than surface melt. However, the physics-aware SRResNet still erroneously produced
high surface melt. It can mean that the model puts too much weight on albedo and too little on
elevation, and/or that this surface type is not represented in the training set. Indeed, in the Antarctic
Peninsula, we have no low-albedo, high-elevation areas.

Ice rises: Antarctic ice rises occur when the flowing part of an ice shelf is diverted around the
grounded region (28). However, the ice rise on the Shackleton Ice Shelf (white arrows in Fig. 2),
is not well-characterized by RACMO2 27 km simulations due to the coarse resolution, neither
by the vanilla nor physics-aware SRResNet model. It is because of the applied DEM, which is
generated from Synthetic Aperture Radar (SAR) observations. And SAR can penetrate dry snow,
which ultimately failed to provide information about this ice rise.
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Figure 2: Annual surface melt in the year 2005 from Regional Atmospheric Climate Mode version
2.3p2 (RACMO2) 27 km simulations, and results from the vanilla and physics-aware SR deep residual
network (SRResNet), and QSCAT-derived surface melt, over entire Antarctica, and zoom-ins over
the Antarctic Peninsula (AP), Roi Baudouin in Dronning Maud Land (DM), Amery Ice Shelf (AIS),
and Shackleton Ice Shelf (SIS).

3.3 Towards an Antarctica-wide surface melt product

Improvements are still needed to push the product towards a better Antarctic product. First, the
quality of input data should be improved, including cloud removal and missing data handling in the
daily MODIS albedo product, as well as snow penetration correction for DEM especially in ice rise
areas, and void-filling. Second, it is necessary to teach the model how to handle and balance the
input physical parameter, for instance in high-elevated low albedo areas (e.g., wind-induced blue
ice areas), which is not presented in the training data set. Third, it is worth trying more complex
model architectures, including physics-informed parts in the loss function, to make the results not
only photo-realistic but also physics-realistic.

4 Conclusions

We present a physics-aware and SRResNet-backboned network to downscale the surface melt
simulations from a regional climate model (RCM) from 27 km to 5.5 km over the entire Antarctica. It
takes advantage that both 27 km to 5.5 km resolution surface melt simulations exist over the Antarctic
Peninsula based on the same RCM, RACMO2, as the training input pairs. The SR model uses the
SRResNet as the backbone while feeding the high-resolution albedo and high-resolution elevation at
the end of the upsampling part. The presented work shows an improvement in spatial transferability
in low-albedo areas (near the grounding line, over the melt-induced blue ice areas), but is still weak
over the wind-induced blue ice areas and ice rise areas.
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