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Wildfire: now and in the future

U.S. 2021 Billion-Dollar Weather and Climate Disasters
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Climate change presents increased potential for very
large fires in the contiguous United States
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Wildfire - Background

> Wildfire risk forecast models are
an important tool to tackle this
problem

» They are driven by atmospheric
forcing among other variables

» These models have been used by
protection agencies worldwide

» Examples are:

P the U.S. Forest Service National
Fire-Danger Rating System
(NFDRS)

» the Canadian Forest Service Fire
Weather Index Rating System
(FWI)

» the Australian McArthur (Mark
5) rating systems
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Fire indices

NFDRS: National Fire-Danger Rating System provides
empirical indexes for measuring fire potential in
wildlands in the USA.

» Ignition component (IC) : Numerical rating of the
probability that a fire that requires suppression
action will result if a firebrand is introduced into
a fine fuel complex

» Burning index (BI) : Metric of flame length in
feet at the head of a fire

> Energy release component (ERC) : Potential
available energy at the head of the fire

» Spread component (SC) : Forward rate of spread
at the head of the fire in feet (1 ft 5 30.5 cm) per
minute.

FWI: Canadian Forest Service Fire Weather Index
Rating System

> Fire weather index (FWI) : Numerical rating of
fire intensity. It is suitable as a general index of
fire danger

» Fine fuel moisture code (FFMC) : Numerical
rating of the moisture content of litter and other
cured fine fuels

» Duff moisture code (DMC) : Numerical rating of
the average moisture content of loosely
compacted organic layers of moderate depth

> Drought code (DC) : Numerical rating of the
average moisture content of deep, compact
organic layers

> Initial spread index (ISI) : Numerical rating of the
expected rate of fire spread

» Buildup index (BUI) : Numerical rating of the
total amount of fuel available for combustion

Mark 5: Australian McArthur rating systems
» Fire danger index (FDI) : Numeric rating related

to the chances of a fire starting, its rate of spread,
its intensity, and its difficulty of suppression

> Keetch—Byram drought index (KBDI) : Metric of
seasonal drought severity and fuel availability

» Drought factor (DF) : Metric of fuel availability
as determined by seasonal severity and recent rain
effects.
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Fire risk indices have many empirically
estimated parameters

Their internal variables are also
meaningful (e.g. moisture content,
loadings of dead and live Fuels, terrain
slope)

We take a novel approach to remodel the
indices (originally Fortran code) as a
neural network

The empirically estimated parameters can
be learned in a (stochastic) gradient
descent procedure (labels are actual
observed fire events)

The advantage of this approach is that the
internal variables are interpretable, they
are the same variables as the original index
(instead of meaningless hidden variables)

The National Fire Danger Rating System: basic equations

Dead and Live Fuel Characteristic Surface-Arca-to-
Volume Ratios:

(dead) SGBRDE = (FIE * SG1) + (FLOE * SG10)
+(ECI00E * SG100)
= (FIOOOE * SG1000)
(lve) SGBRLE = (FWOODE * SGWOOD)
+ (FHERBE * SGHERB)

Characteristic Surface-Area-to-Volume Ratio:

SGBRTE - (FDEADE * SGBRDE)
+ (FLIVEE * SGBRLE)

Optimum Packing Ratio:
BETOPE = 3.348 * SGBRTE**(-0.8189)
Maximum Reaction Velocity:

GMAMXE = SGBRTE**1.5/(495.0
+0.0594 * SGBRTE®*1.5)

Opinmum Reaction Velocity:

GMAOPE = GMAMXE
(BETBAR/BETOPE)** ADE*EXP(A

(10 BETBARBETOPE)
inwhich ADE = 133.0 * SGBRTE**(0.7913)

Weighted Moisture Contents of Dead and Live Fuels:

(dead) WIMCDE = (FIE * MCI) + (FI0E +MCI0)
(FI00E * MC100)
F{EI0E < MCio0)
(ive) WTMCLE = (FWOODE * MCWOOD)
 (ERBE + MCHERE)

Moisture Damping Coefficients of Dead and Live Fuels:
(¢exd) ETAMDE =10- 20 * DEDRTE
*DEDRTE**2.0
0.5 * DEDRTE**3.0
(W ETAMLE =10-20* LIVRTE
1.5 * LIVRTE**20
- 05 *LIVRTE**3.0

in which
DEDRTE = (WTMCDEAOID)
LIVRTE = (WTMCLE/ MXI
ETAMDE snd ETAMLE st b ess th 10 or
areater than 1.0

Reaction Intensiy:

3

Improve fire indices for specific regions - Fire Model DNN

IRE = GMAOPE * ((FDEADE * WDEDNE *
* ETASD * ETAMDE) + (FLIVEE * e
L * ETASL * ETAMLE)

Residence time of the Flaming Front:
TAU = 3840/ SGBRT
The surface area weighted surface area-to-volume ratio,

SGBRT, is used rather than the mass weighted form
(SGBRTE). The mass weighted residence time produced

ERC = IRND(0.04 * IRE * TAU)

The 0.04 scaling factor has the units f” Bru. As such, a
unit value of ERC is equivalent 0 25 Buu of available energy
per square foot.

Buming ndex
b

Buming Index:
BI= IRND(.01 * (SC * ERC)**0.46)
I the fuels are wet o covered by snow or ice a observa-
tion time, the B is set o zer.
Models of Fire Occurrence
Ignition Comg

ponent
The IC consists of two parts: (1) the probability that




Improve fire indices for specific regions - Fire Model DNN
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Fire risk indices have many empirically
estimated parameters

Their internal variables are also
meaningful (e.g. moisture content,
loadings of dead and live Fuels, terrain
slope)

We take a novel approach to remodel the
indices (originally Fortran code) as a
neural network

The empirically estimated parameters can
be learned in a (stochastic) gradient
descent procedure (labels are actual
observed fire events)

The advantage of this approach is that the
internal variables are interpretable, they
are the same variables as the original index
(instead of meaningless hidden variables)

The National Fire Danger Rating System: basic equations

Optimum Packing Ratio:
BETOPE = 3.348 * SGBRTE**(-0.8189)
Maximum Reaction Velocity:

GMAMXE = SGBRTE**1.5/(495.0
+0.0594 * SGBRTE**1.5)

Optimum Reaction Velocity:

GMAOPE = GMAMXE
* (BETBAR/BETOPE)**ADE*EXP(ADE
* (1.0 - BETBAR/BETOPE))
in which ADE =133.0 * SGBRTE**(-0.7913)

Weighted Moisture Contents of Dead and Live Fuels:



Make parameters learnable




Make parameters learnable

IC = IRND(0.10 * P(I) * P(F/I))



Make parameters learnable

observed
fire




Make parameters learnable

observed
fire

P(I) = (CHI**3.6 * PNORM3
- PNORMI) * 100.0/PNORM2

PNORMI =0.00232
PNORM?2 = 0.99767
PNORM3 = 0.0000185
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Make parameters learnable
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P(I) = (CHI**3.6 * PNORM3
- PNORMI) * 100.0/PNORM2

PNORMI =0.00232
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Make parameters learnable




Making hard branches (and a few more things) smooth

For example, IC is set to zero if the
expression:

((344. — QIGN)/10.)*° « PNORM3
is equal or less than PNORM1. We have a

pattern like:

if X< A then
return Y
else
return Z

which becomes the smooth:

c(X—A)xa)x(Z-Y)+Y

An internal variable in the NFDRS model is
P(F /1), which stands for the probability of
a reportable fire and is defined as:

P(F/I) = v/SCN

where SCN is normalized rate of spread.
Consider a weight w downstream in the
model. In order to compute an update to w
so as to minimize the loss £, one would
need to compute the derivative of P(F/I)
with respect to SCN:

oL oL OP(F/I) 9SCN

ow  OP(F/I) 0SCN ow
which exists but is infinity when SCN is
zero, but physically it can indeed be zero.

To avoid the derivative to blow up we clip
the gradients.




Results - California
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Results - Texas

Texas Baseline EDI

Texas Trained EDI
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EDI measures the skill of the index. It ranges from -1 to 1 and 1 corresponds to a perfect score



Sample result - Italy

Italy Baseline EDI
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EDI measures the skill of the index. It ranges from -1 to 1 and 1 corresponds to a perfect score

The model can improve further by making more parameters learnable (i.e. make more
parts of the model differentiable)



Final Remarks

» Fire indices are used worldwide to estimate fire risk

» These indices have interpretable internal variables whose relationships are
established through fixed parameters

> We recasted an existing fire index as a neural network in which the weights are the
index parameters

» This approach has three advantages: (1) we start from a proven fire index, and (2)
parameters can be adjusted to the current climate and location, and (3) internal
variables have meening



