

SolarDK

A high-resolution urban solar panel
image classification and localisation
dataset

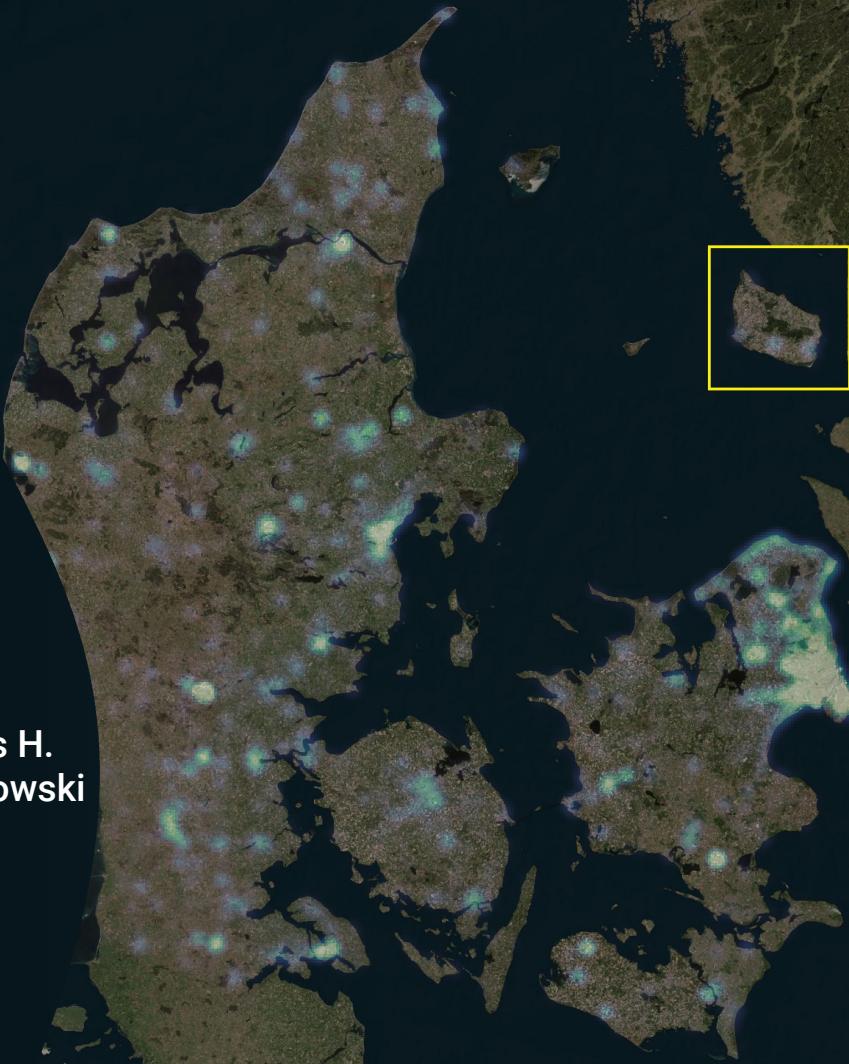
Carl A.
Schmidt

Mads
Andersen

Mathias B.
Sørensen

Maxim
Khomiyakov

Julius H.
Radzikowski



Introduction

- Energy source of the future?
- Where do policy makers focus resources?
- Generalization across geospatial domains

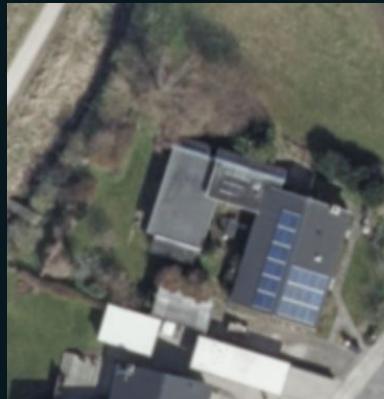
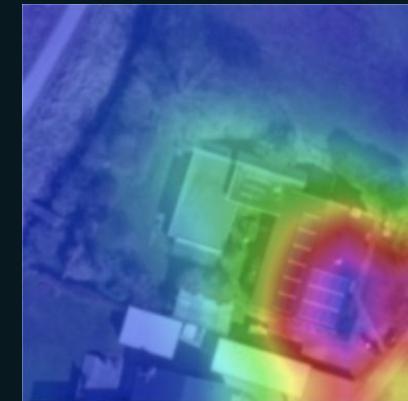


Image from dataset

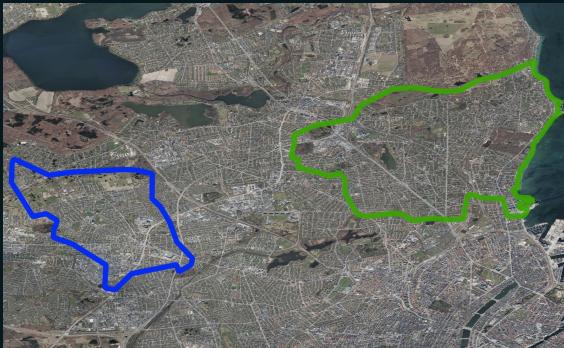
Class activation map



Data

All data is published with this paper

(1) Assisting - The existing BBR register

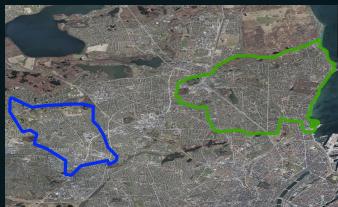


(2) Primary - Manually labeled data set

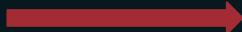
6 example images from both datasets

Data - Classification

(1) The existing BBR register



(2) Manually labeled data set



Dataset	Negatives	Positives	Area (km ²)
BBR	-	104,397	3,853,02
Herlev	7,048	398	12,07
Gentofte	15,489	482	25,70
Total	22,537	105,334	3,890.79

Three data & model scenarios:

- Pre-trained models out of domain
- Pre-trained models out of domain, with minority class sampling (BBR)
- Pre-trained models of the same domain

Baseline - Classification

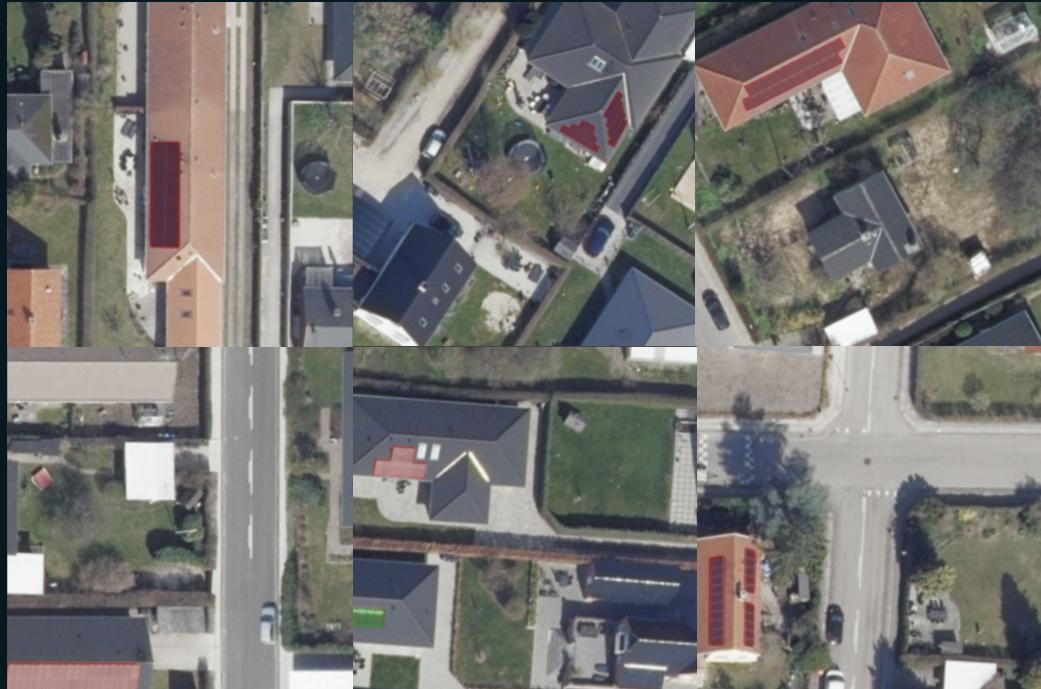
Model	Recall	Precision	Cohens (κ)
ConvNext	0.60 \pm 0.04	0.79\pm0.03	0.66\pm0.02
EfficientNet-b5	0.26 \pm 0.01	0.64 \pm 0.08	0.35 \pm 0.03
EfficientNet-b7	0.35 \pm 0.05	0.71 \pm 0.02	0.45 \pm 0.04
InceptionV3	0.34 \pm 0.18	0.56 \pm 0.38	0.55 \pm 0.04
ResNet50	0.25 \pm 0.02	0.78 \pm 0.04	0.36 \pm 0.02
ResNet101	0.58 \pm 0.40	0.49 \pm 0.39	0.41 \pm 0.21
ResNet152	0.65\pm0.16	0.51 \pm 0.28	0.49 \pm 0.14
ConvNext*	0.65\pm0.07	0.70 \pm 0.06	0.65\pm0.03
EfficientNetb5*	0.31 \pm 0.10	0.60 \pm 0.09	0.38 \pm 0.07
EfficientNetb7*	0.51 \pm 0.09	0.66 \pm 0.11	0.54 \pm 0.05
InceptionV3*	0.53 \pm 0.08	0.73\pm0.09	0.58 \pm 0.05
ResNet50*	0.41 \pm 0.04	0.71 \pm 0.07	0.49 \pm 0.04
ResNet101*	0.41 \pm 0.10	0.65 \pm 0.03	0.46 \pm 0.08
ResNet152*	0.36 \pm 0.17	0.66 \pm 0.15	0.40 \pm 0.10
SolarDE (inference)	0.4186	0.1667	0.2124
SolarDK	0.7337	0.6505	0.6717

Color and light errors

Warping, blur or errors in images

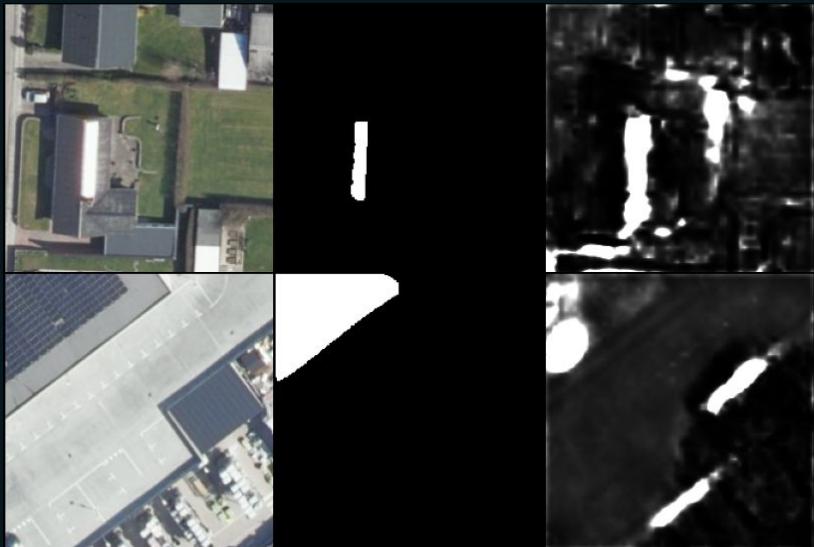
Data - Segmentation

- 880 images human labelled using Toronto Annotation Suite
- Challenges from classification dataset remain: incident angle leading to high albedo reflections (difficult to discern panels from windows)
- Mix of industrial and residential sized PV systems



Baseline - Segmentation

Model	Recall	Precision	IoU
ResNet50-DeepLabV3Plus	0.81±0.03	0.86±0.01	0.72±0.02
ResNet101-DeepLabV3Plus	0.79±0.05	0.86±0.02	0.70±0.03
ResNet152-DeepLabV3Plus	0.79±0.04	0.88±0.03	0.71±0.02
ResNet50-FPN	0.80±0.03	0.87±0.03	0.72±0.01
ResNet101-FPN	0.79±0.02	0.87±0.02	0.71±0.01
ResNet152-FPN	0.81±0.06	0.87±0.05	0.72±0.01
ResNet50-PSPNet	0.75±0.04	0.85±0.03	0.64±0.04
ResNet101-PSPNet	0.66±0.13	0.88±0.05	0.61±0.07
ResNet152-PSPNet	0.72±0.05	0.85±0.04	0.63±0.02
DeepSolarDE (inference)	0.5262	0.3378	0.5098
DeepSolarDK	0.8468	0.7463	0.6239



Examples of poor IoU (< 0.6)

Final remarks

- Increasing amount of distributed energy sources requires better planning and mapping of energy generation sources
- Novel dataset for solar power classification and localisation
- Presented baselines demonstrate the need to garner more datasets to alleviate geographical domain shift