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Abstract

Despite a climate and topology favorable to hydropower (HP) generation, HP
only accounts for 4% of today’s Japanese primary energy consumption mix. In
recent years, calls for improving the efficiency of Japanese HP towards achiev-
ing a more sustainable energy mix have emerged from prominent voices in the
Ministry of Land, Infrastructure, Transport and Tourism (MILT). Among potential
optimizations, data-driven dam operation policies using accurate river discharge
forecasts have been advocated for. In the meantime, Machine Learning (ML) has
recently made important strides in hydrological modeling, with forecast accuracy
improvements demonstrated on both precipitation nowcasting and river discharge
prediction. We are motivated by the convergence of these societal and technological
contexts: our final goal is to provide scientific evidence and actionable insights for
dam infrastructure managers and policy makers to implement more energy-efficient
and flood-resistant dam operation policies on a national scale. Towards this goal
this work presents a preliminary study of ML-based dam inflow forecasts on a
dataset of 127 Japanese public dams we assembled. We discuss our preliminary
results and lay out a path for future studies.

1 Introduction

Dam operation is a problem of control under uncertainty, in which dam operators aim to maximize
multiple objectives (flood protection, HP generation, etc.) given uncertain forecasts of river discharge
flowing into dam reservoirs. The more accurate river discharge forecasting is, the more efficiently
(in terms of both flood protection and HP generation) dams can be operated. The uncertainty in
discharge forecast can be attributed to two main factors: Uncertainty in precipitation forecast (how
much rain will fall) and uncertainty in hydrological modeling (how much of the rain will flow into
rivers). High levels of uncertainty and abundant alternative energy sources have lead Japanese public
dam operators to adopt conservative operation strategies sub-optimal for HP production. However
two factors may come to challenge this status quo: First, social and environmental pressures on
fossil fuels and nuclear energy production, combined with the rapid development of intermittent
renewable energy sources, are foreseen to increase the value of HP generation. Second, advances in
both environmental modeling and statistical inference models are foreseen to increase the accuracy
of forecast, allowing for better-informed dam operation policies. Combined, these two factors may
challenge the current risk-benefit analysis of dam operation towards more efficient operation policies.

This work is part of a parent project that aims to provide both scientific evidence and actionable
insights for dam infrastructure managers and policy makers to implement more energy-efficient and
flood resistant dam operation policies on a national scale. In this work, we present the results of our
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Figure 1: (Left) Current energy supply rates (Energy consumed / HP production) coming from
HP (Center) Potential HP supply rate. Both figures were collected and translated from [1] (Right):
Ilustration of the dam locations of our dataset. Many collected dams are located in prefectures with
high potential for optimization.

initial efforts, focusing on improving the accuracy of river discharge forecast inflowing to Japanese
public dam reservoirs. To do so, we have assembled a dataset of public Japanese dams, which we
present in Section 3, and proposed different ML discharge forecasting systems, which we evaluate
in Section 4. Section 5 discusses our results and future works. Section 2 motivates our study with
further background information.

2 Background

A mountainous topology and a heavy rain climate lend Japan a high potential for hydro power
generation. Historically, Japan has extensively relied on HP generation during the first half of the
20th century, favoring HP over fire-based energy for its base load supply. As the post-war period
of great economic development called for increased energy consumption, fossil fuel plants were
preferred to HP for their ability to quickly and efficiently answer the rapid increase in demand. Later,
the oil shock has seen Japan strategically develop nuclear power generation to ensure its energy
independence. Due to longer infrastructure development times, HP lost its competitiveness in times
of rapidly moving energy needs, so that its operating infrastructure has been comparatively little
optimized [1]. Today, nuclear incidents and international pledges to reduce carbon emissions have
come to threaten the long term viability of Japan’s current energy mix. While solar and wind power
generation are being intensively developed, their intermittent nature does not allow them to cover
for the base load and demand response capacity provided by fossil fuel plants. In this context HP
generation is seen as a valuable low-carbon alternative to fossil fuels for both base load and demand
response needs to complement the development of intermittent renewable energy sources. For all its
benefits, several voices from the MLIT have been advocating for a more efficient use of Japanese
water resources towards HP generation [1,2]. Figure 1, drawn from a 2019 report on the state and
future of Japanese HP [1], shows the current rate of energy demand supplied by HP per prefecture,
and contrasts it to potentially achievable supply rates, illustrating large potential benefits. Among
the potential optimization, the implementation of power efficient dam operation policies powered by
accurate river discharge forecasts has been identified as a high potential candidate.

Furthermore, climate change is expected to have a deep impact on surface water distribution in Japan
[7], with impacting local disparities, including decreased snow melt in the northern and Japan sea
regions, increased drought periods in the south, and increased flooding risks due to heavy rain events
across the country. Both the destabilization of surface water distribution and the increased risks of
heavy-rain related incidents call for better forecasting abilities to optimize operation processes At the
same time, ML-based river discharge models have been shown to outperform traditional methods on
several benchmarks[4,5,6], with notable voices calling for further development of ML approaches [3].
In the meantime, another line of work has shown ML-based precipitation nowcasting to outperform
state-of-the art ensemble physical simulations Together, these works beg the question of whether



ML can provide river discharge forecast accurate enough to empower efficient dam operation policy
implementations in Japan, as called for by prominent policy makers [1,2].

3 Dataset

We have assembled a dataset covering
127 public dams across Japan, as illus-

trated in Figure 1. For each dam, we  DataSource  Variable Type Ur;it
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(the area). We further gathered in-situ Table 1: Summary of the variables in our dataset

(gauge precipitation measurements) from

the MLIT and snow melt variables from land surface models, and interpolated this data to dam’s
drainage areas. In this paper, we focus on river discharge forecast horizons of up to 3 days, which
was estimated to be the time needed for most small to medium size dams to preemptively empty
their reservoirs to buffer heavy rain event discharges. After processing, each dam is represented by
one catchment-aggregated time series per input variable and one for the output (discharge). Table 1
provides details on the different variables we collected for each dam. This dataset will be released,
along additional Japanese river discharge measurements, following existing hydrological standard in
an upcoming paper.

4 Experiments

We aim to maximize forecast accuracy and characterize forecast errors by quantitatively answering
the questions listed below. To do so, we split our dataset into a training set ranging up to January
2018, a validation set between January and December 2018 and a test set made of data from January
to December 2019. Models were trained to regress the river discharge from different variables on the
training set, and evaluated on the test set. In all experiments, we train one model per dam, and report
the average accuracy on the full test set (averaged accross dams). When left unspecified, the model
used is a linear baseline regressor, prefered for its computational efficiency.

How does forecast horizon impact river discharge accuracy? Figure 2(a) illustrates the decrease
of forecast accuracy with increasing forecast horizon. The yellow curve represents our best results
using realistic data: in-situ measurements of past discharge (PD) and precipitations, as well as JIMA’s
Precipitation Forecast (PF) were used as inputs to a linear model. Other curves were computed for
ablation study, as discussed below.

Are discharge forecast errors most impacted by precipitation forecast errors (how much rain
will fall) or hydrological errors (how much of the fallen rain will flow into the dam)? In Figure
2(a), we simulated a perfect precipitation forecast by using future in-situ precipitation observations,
and used this data instead of JMA’s precipitation forecast to draw the blue and red curve. We can
see that the model maintains high accuracy throughout the horizon window, suggesting that most
long-horizon errors are dominated by uncertainty in the precipitation forecast, as quantified by the
difference between the yellow and blue curve. Using past disharge as inputs improves greatly forecast
accuracy on short-term horizon, but have more limited effect on longer time horizon, as illustrated by
the difference between the blue and red curve. The decrease in accuracy observed in the blue curve
can thus be attributed to hydrological errors.

What variables are most predictive of river discharge? Figure 2(b) highlights the importance of
quality precipitation estimates, by showing results on a 24 hours horizon forecast using different
precipitation observations. In-situ observations provide large improvements over both remote sensing
estimates and assimilated model simulations. Temperature seems to provide little predictive power,
as shown in Figure 3(c) Snowmelt was also found to have an important impact for dams in the north
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Figure 2: Impact of different modeling on discharge forecast accuracy

and along the Japan sea. We study the impact of providing snow melt information (simulation data
provided by the Today Earth model [9]) as input to the model and compare forecast accuracy with and
without snowmelt data in Figure 3. Large accuracy gains can be observed in heavy snowfall regions
(North and Japan sea). We also find that using past discharge observations with conditioning of the
model on the current month allow to recover similar accuracy, which suggests that snowmelt-induced
discharges may be smooth enough to be infered from past discharge observations and seasonality
only. It remains to be seen whether this strategy may work for longer horizon times.
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Figure 3: Illustration of the impact of snow melt modeling on discharge forecast accuracy

What hydrological models are most accurate for river Japanese dams discharge modeling? We
compare the accuracy of different ML models to that of a global hydrology model [8] on a one hour
horizon forecast, and show that ML models outperform the hydrology model. This may be due to ML
model relying extensively on high-precision local data, while the global model does not. In addition,
it can be seen that more expressive models outperform the baseline linear models. This trend was
only observed for high precision precipitation estimates, while the difference between ML models
was found to be minimal when using noisy precipitation estimates.

5 Conclusion and Future Work

Motivated by calls from Japanese policy makers to optimize HP generation, we have assembled a
dataset and developed models to forecast river discharge flowing into public dam reservoirs. We
found that locally trained ML-based models outperform physics-based global hydrology models.
We have identified precipitation observation and forecast accuracy as the critical factor of discharge
forecast accuracy, and quantified the impact of snow melt modeling. Advanced ML models do
improve river discharge accuracy, but only in the case of accurate enough precipitation forecast and
observations. In the low precipitation accuracy regime, a simple linear baseline performs on par with
more sophisticated models. The sharp decrease in accuracy observed for time horizons within 24
hours, and the observed importance of accurate precipitation forecast suggest that improvement in
precipitation nowcasting may bring impacting improvements to short term river discharge forecasting.
In future work, we thus plan to integrate recent deep learning based nowcasting systems to our study.

Despite the encouraging answers and perspectives we have managed to gather, many important
questions remain. Maybe the most fundamental question remaining towards our final goal is: how
do forecast errors impact the efficiency of dam operations, and what forecast accuracy is required



to enable data-driven energy efficient policies? We have summarized our preliminary efforts to
answer this question in a companion paper submitted to this workshop, in which we propose to use
Reinforcement Learning as an operational metric for river discharge forecast accuracy assessment.
Finally, an important axis of our study will be to integrate reliable uncertainty estimates of pour
forecasts.
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