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Background: The Water Cycle



Water Resources in a Changing Climate

In the context of Climate Change (CC), the demand on water resources is increasing
as both flood and drought related damages increase

There is a need to better understand the dynamics of water surface distribution to
improve both climate modeling and water resource management operations.

Evapotranspiration (ET) is one of the most uncertain components of the global
Water Cycle (WC).

Improving global ET estimates is thus needed to forecast the consequences of
climate change on the future of global water resource distribution.
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The Water Cycle

* The Water Cycle is modeled at the catchment scale as River Discharge (RD)
measurements are only available from point-wise in-situ observations

* At the catchment-scale, the water cycle is modeled through the four components of
Precipitation (P), ET, R and water Storage Differential dS. These components
should sum to o in the absence of observational uncertainties.

E Watershed
= River

¢ RD in situ obs

P—ET-R+4+dS=0
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The Water Cycle

* The Optimal Interpolation (OI) framework has been shown to efficiently leverage
the WC closure constraint to correct each WC component at the catchment scale.

* To improve global ET datasets, we aim to generalize the corrections on ET
estimates brought at the catchment-scale by the OI framework to the pixel scale.



Global ET Errors

* Global ET datasets do not account for secondary ET: evaporations from wetlands,
waterbodies and irrigated areas

* Global ET datasets have been shown to suffer from systematic errors in semiarid

regimes and tropical forests, as well as imperfect representations of water stress
and canopy interception.

* We thus propose to regress ET corrections (provided by the OI) from both WC
components and climatic indices reflecting the above expected sources of errors



Proposed Method



A problem of two scales

* We aim to regress catchment-scale corrections GT from pixel-level inputs.

* We thus define a pixel-wise correction model f, and aggregate its outputs over a
catchment c, for each time stamp t:

¢ [ Folct) = > fo(z)

reX(c,t)




A problem of two scales

* We then regress the aggregated output F to the ground-truth correction y over our
dataset

80(67 t) = FO(C1 t) - y(C, t)

L(0) = % Z an(c, t)

ceC teT
Ox = mingcoL(0)

* We parameterized the pixel-wise ET correction function f with a 4 layers MLP of width
512, which we trained using the Adam optimizer
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Experiments and Results



Dataset

* We collected a dataset of 663 catchments
globally distributed.

. * We collected various climatic indices to use
3 o / as input to our correction model (detailed
A table available in slide 17)

* We investigate a period of 192 months
spanning from the year 2000 to 2015
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* The spatial resolution of the pixel-level data
is 0.25 degrees

Illustration of our dataset’s catchments distribution
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Dataset

* We applied our methodology to correct 4 different global ET datasets:
* The Global Land Evaporation Amsterdam Model (GLEAM) version va.3 and vb.3
* The Penman-Monteith-Leuning (PML) estimate
* The ET variable of the ERA§ reanalysis.
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Latitude

Latitude

Correction Visualizations (Bias)
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Visualizations

* We validate our results by comparing global ET datasets with and without applying our
learned corrections on:

* The water cycle closure residual on our test catchments (left)

* Difference between global ET estimates and in-situ measurements (right)

Decomposition of water closure MSE before and after correction Decomposition of MSE to in-situ Flux
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(a) Water Cycle closure MSE

(b) In-situ data MSE
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Conclusion
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Conclusion

We proposed a methodology to bring corrections to global pixel-level ET datasets

Our approach consists in regressing catchment-level corrections computed with Ol
framework from pixel-level globally available climatic indices.

Our model was shown to improve the water cycle closure across three datasets and
improve on in-situ observations over three of the four datasets

A long-form version of this paper with additional results and explanations is in
preparation for journal publication, please connect with us if you are interested in
further details on this work
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Data used in this stu

Dataset Coverage S. res. (°) T. res. Reference

Evapotranspiration

GLEAM vb 2003-2017 0.25 daily (Martens et al., 2016)
GLEAM va 1980-2017 0.25 daily (Martens et al., 2016)
CSIRO 1980-2012 0.5 monthly  (Zhang Yongqgiang et al., 2016)
ERA-5 1980-2017 0.25 6h (Hersbach & Dee, 2016)
Precipitation
GPCP 1979-2015 1 monthly (Huffman et al., 2001)
TMPA 2002-2015 0.25 daily (Huffman et al., 2007)
MSWEP 1979-2015 0.5 daily (Beck et al., 2017)
ERA-5 1980-2015 0.25 6h (Hersbach & Dee, 2016)

Water storage

JPL 2002-2017 1 monthly (Watkins & Yuan, 2014)
CSR 2002-2017 1 monthly (Bettadpur, 2012)
GFZ 2002-2017 1 monthly (Dahle et al., 2013)

River network & discharge

Flow direction static 0.25 NA (Yamazaki et al., 2019)

Discharge 1980-2015 NA monthly (Do et al., 2018)

Auxiliary information used in the ML-correction model

Soil moisture 1980-2015 0.25 6h (Hersbach & Dee, 2016)
Tskin 1980-2015 0.25 6h (Hersbach & Dee, 2016)
LAI 1980-2015 0.25 6h (Hersbach & Dee, 2016)
NDVI 1980-2015 0.25 daily (Mu et al., 2011)
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