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Abstract

Evapotranspiration (ET) is one of the most uncertain components of the global1

water cycle. Improving global ET estimates is needed to better our understanding of2

the global water cycle so as to forecast the consequences of climate change on the3

future of global water resource distribution. This work presents a methodology to4

derive monthly corrections of global ET datasets at 0.25 degree resolution. We use5

ML to generalize sparse catchment-level water cycle closure residual information6

to global and dense pixel-level residuals. Our model takes a probabilistic view on7

ET datasets and their correction that we use to regress catchment-level residuals8

using a sum-aggregated supervision. Using four global ET datasets, we show that9

our learned model has learned ET corrections that accurately generalize its water10

cycle-closure results to unseen catchments.11

1 Introduction12

In the context of Climate Change (CC), the demand on water resources is increasing as both flood13

and drought related damages increase. Human activities are known to impact the global water14

cycle. However observational uncertainties limit extreme hazard forecast capability and render15

human contribution to CC trend estimates very challenging in the context of high natural climate16

variability [1]. The main evidence of observational uncertainties and discrepancy in monitoring of17

the hydrosphere is that the water cycle is still not closed [2]. The water cycle is modelled through18

four components:, precipitation (P), evapotranspiration (ET), river discharge (R) and water storage19

differential (dS). Closing the water cycle refers to accurately quantifying each of these components at20

a given spatial and temporal resolution so that they sum to zero on all spatio-temporal locations:21

P − ET −R+ dS = 0 (1)

Among the hydrosphere component, ET remains one of the most uncertain and elusive components of22

Earth’s water balance: it is a difficult physical process to sense as it cannot be observed directly from23

space, and its field measurement via eddy-covariance method raise limited spatial representatives24

[3]. Improving ET is needed for an advanced closure of the water cycle at regional to local scales.25

Such improvement would translate into an improved capability to monitor and forecast extreme26

hazard and to attribute to human activity a more accurate part of global change. One the one hand27

previous studies have succeed in optimizing ET using the water cycle closure as a constrain [11,12].28

but such attempts was limited to global or catchment scale and raise limitation in generalizing ET29

correction at higher scale [13]. Very recently, ML have leverage the use of hydroclimatic variables30

and large catchment database for inferring pixelwise correction on precipitation atlas [14]. In this31

work, we propose a method that corrects existing global ET datasets so as to better close the water32
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cycle. Doing so presents two challenges: First, the water cycle constraint includes the R component,33

which is only defined at the catchment scale, while we seek evaporation corrections at the pixel34

scale. Second, R measurements are only sparsely available, so water cycle closure errors are only35

available locally in space and time, while we aim to provide dense corrections to global ET datasets.36

Our solution to both challenges is to use Machine Learning (ML) to generalize ET corrections from37

sparse catchment levels to dense pixel level. We train a pixel-wise model to regress ET corrections38

from globally available climatic indices, which allows us to generalize the learned corrections to39

a dense pixel-wise resolution. Due to the nature of the R measurements, the supervision signal is40

defined at the catchment level, so we train our model using a sum-aggregated supervision in which41

we regress the sum of model outputs over catchment pixels to the catchment-level label. Our loss is42

defined using a Maximum A Posteriori (MAP) formulation, in which we use prior knowledge on ET43

uncertainties to guide the supervision.We evaluate the ability of learned corrections to close the water44

cycle on unseen catchments and report consistent improvements across 4 global ET datasets. We also45

compare ET corrections to in-situ measurements and report improvements on 3 out of 4 datasets.46

2 Dataset47

Figure 1: Illustration of our dataset’s catchment
locations and split.

Figure 1 illustrates the location of training and48

test catchments for which we have gathered data.49

We investigate four different global ET datasets,50

for each of which we learn and evaluate correc-51

tions. Each dataset estimates ET using different52

methodology and thus showcase different error53

patterns. These datasets are Global Land Evap-54

oration Amsterdam Model [6] version va.3 and55

vb.3, the Penman-Monteith-Leuning (PML) es-56

timate [7] and the reanalysis ERA5 [8]. Our57

dataset contains 663 catchments (C) and covers58

a time period (T ) of 192 months ranging from59

January 2000 to December 2015, although many60

months of data are missing for most catchments. In total, our dataset consists of 71654 monthly61

catchment-level data points for which all components are available. Our model is defined at a spatial62

resolution of 0.25 degrees, and a one month time resolution. It processes D = 7 dimension input63

feature vectors, representing ET, P, dS, and four climatic indices representing vegetation cover (LAI64

[8], NDVI [9]), soil moisture [8], and surface water availability (P-E from [8]). Given an ET dataset65

Ei, for each catchment c ∈ C and for each month t ∈ T , the ground-truth correction y is given as66

the difference y(c, t) = E(c, t)− Ei(c, t), where E represent the best catchment-level water cycle67

closure corrected estimate we have. E was computed using the Optimal Interpolation (OI) method68

proposed in [10], which accounts for uncertainty estimates of all water cycle component and has69

been shown to improve the catchment-level estimates of all components [11]. In addition, we used a70

catchment-level simple-weighting aggregation [10] of all four ET datasets as the input ET component71

to the OI. For each catchment and month index pairs (c, t), our dataset thus provides an input output72

pair (X(c, t), y(c, t)). As each catchment covers many pixels, X represents a set of input feature73

vectors X(c, t) = {xi∀i ∈ N(c)}, with xi ∈ RD, N(c) represents the number of pixels covered by74

catchment c, and D = 7 is the input feature dimension we use.75

3 Method and Experiments76

Our goal is to find a function fθ(x) that regresses pixel-wise ET corrections y to ET values E from77

input x, and we refer as Ê = E + y to the corrected evaporation values. We take a probabilistic view78

of ET datasets and their correction. We consider each dataset to provide us with prior knowledge79

on ET in the form of a Gaussian distribution centered on E: p(Ê) = N (E|σE). Following a recent80

review paper [2], we use the relative uncertainty estimate σE = 7·E
100 in our experiments. We can81
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rewrite this prior in terms of y as P (y) = N (0|σ). We define a likelihood over the correction y as82

a Gaussian distribution whose mean we parameterize with a Multi Layer Perceptron (MLP) hθ(x)83

and with standard deviation σy , which we calibrate on a validation set: p(y|x) = N (hθ(x)|σy). The84

correction fθ(x) we bring to each dataset is then defined as a MAP given the prior P provided by the85

dataset and the parameterized likelihood function p:86

fθ(x) = maxyp(y|x)P (y) (2)

fθ(x) =
σ2
E × hθ(x) + 0× σ2

y

σ2
y + σ2

E

(3)

fθ(x) =
hθ(x)

1 +
100×σ2

y

7×E

(4)

The rationale for this MAP formulation is that it allows to scale the correction with the original dataset87

value: Indeed, ET estimates are, in absolute values, less error-prone in very dry regions (where ET is88

close to zero) than in wet regions (where ET takes large values). The difference between using MAP89

and likelihood corrections is illustrated in Figure 2. Although fθ(x) is defined at the pixel level, the90

supervision y is defined at the catchment level. To train the model, we thus first apply the model91

on the pixels of each catchments, then aggregate the model output by summation, and regress the92

aggregated sum of corrections to the label y. For a given catchment and month, the catchment level93

correction computed by our model is thus:94

Fθ(c, t) =
∑

x∈X(c,t)

fθ(x) (5)

so that we can write our loss function L and optimization problem as:95

eθ(c, t) = Fθ(c, t)− y(c, t) (6)

L(θ) = 1

T

∑
c∈C

∑
t∈T

eθ(c, t)
2 (7)

θ∗ = minθ∈ΘL(θ) (8)

We analyse the errors of ET datasets before and after our correction to better understand the nature96

of the corrections we bring. To do so, we decompose residual errors into three components: a bias97

term B that represents the average error per catchment, a seasonality term S representing the errors98

of monthly-averaged difference to the bias, and an anomaly term A that random variations after99

elimination of the systemic bias ans seasonality components. We denote by M = {mi} to denote the100

set of 12 months, and we write m(t) ∈ M to denote the month of a given time index t ∈ T . Given a101

catchment c ∈ C at time t a residual term y can be decomposed into three component as follows:102

e(c, t) = e(y, c) + e(y, c,m(t)) + e(y, c, t), in which:103

b(e, c) =
1

T

∑
t∈T

e(c, t) (9)

s(e, c,m) =
M

T

∑
t∈m

e(c, t)− b(y, c) (10)

a(e, c, t) = e(c, t)− b(y, c)− s(y, c,m(t)) (11)

Ignoring the cross terms, which were empirically found negligible, we can then decompose the loss104

into three residual error components that give us more insights on the nature of the ET residual error.105
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L(θ) =
∑
c∈C

(
b(e, c)2 +

1

M

∑
m∈M

s(e, c,m)2 +
1

T

∑
t∈T

a(e, c, t)2

)
(12)

L(θ) =
∑
c∈C

B(c) + S(c) +A(c) (13)

Figure 2: Illustration of MAP impact.

We trained a MLP with 4 hidden layers of width 512 on a training set of 496 catchments using the106

Adam [5] optimizer, and evaluated its accuracy on a test set of 166 catchments. Splits were built so107

that no train catchment overlap, even partially, with the test catchments. We report generalization108

results on the test split in terms of MSE, and decompose the error into the three components: B,S,A.109

Impact of MAP modeling: Figure 2 compares the per-pixel mean corrections of the likelihood hθ110

and the MAP fθ. The MAP successfully reduces the high biases of the likelihood above the Sahara111

region in which ET is expected to remain close to zero for the absence of water.112

(a) Water Cycle closure MSE (b) In-situ data MSE

Figure 3: MSE decomposition of ET estimates before (No Patch) and after (MAP) corrections. (a)
Water cycle closure error computed on the test split, (b) Distance to in-situ measurements.

Water cycle closure: Figure 3(a) shows the MSE of water cycle closure of each dataset before and113

after applying our corrections. We successfully reduce the water closure gap on all components.In-114

situ measurements: In Figure 3(b), we show the the MSE to in-situ measurements of the FLUX115

dataset [15] before and after applying our learned corrections. We find corrected global ET values to116

better fit in-situ measurements for three out of the four datasets.117

4 Conclusion118

Improving global ET estimates is needed to better our understanding of the global water cycle, so as119

to better understand the consequences of climate change on the future of global water distribution. In120

this work, we proposed a methodology to learn a correction of global ET datasets. Our method uses121

ML to generalize sparse catchment-level water cycle closure residual information to global, dense,122

pixel-level residuals. To do so, we modeled a pixel-level model that we trained to regress catchment-123

level residuals using a sum-aggregated supervision. Using four global ET datasets, quantitative124

experiments have shown the ability of our model to generalize to unseen catchments and to reach125

relative agreement with in-situ measurements.126
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