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Abstract

Evapotranspiration (ET) is one of the most uncertain components of the global
water cycle. Improving global ET estimates is needed to better our understanding of
the global water cycle so as to forecast the consequences of climate change on the
future of global water resource distribution. This work presents a methodology to
derive monthly corrections of global ET datasets at 0.25 degree resolution. We use
ML to generalize sparse catchment-level water cycle closure residual information
to global and dense pixel-level residuals. Our model takes a probabilistic view on
ET datasets and their correction that we use to regress catchment-level residuals
using a sum-aggregated supervision. Using four global ET datasets, we show that
our learned model has learned ET corrections that accurately generalize its water
cycle-closure results to unseen catchments.

1 Introduction

In the context of Climate Change (CC), the demand on water resources is increasing as both flood
and drought related damages increase. Human activities are known to impact the global water
cycle. However observational uncertainties limit extreme hazard forecast capability and render
human contribution to CC trend estimates very challenging in the context of high natural climate
variability [1]. The main evidence of observational uncertainties and discrepancy in monitoring of
the hydrosphere is that the water cycle is still not closed [2]. The water cycle is modelled through
four components:, precipitation (P), evapotranspiration (ET), river discharge (R) and water storage
differential (dS). Closing the water cycle refers to accurately quantifying each of these components at
a given spatial and temporal resolution so that they sum to zero on all spatio-temporal locations:

P—-ET-R+dS=0 (1

Among the hydrosphere component, ET remains one of the most uncertain and elusive components of
Earth’s water balance: it is a difficult physical process to sense as it cannot be observed directly from
space, and its field measurement via eddy-covariance method raise limited spatial representatives
[3]. Improving ET is needed for an advanced closure of the water cycle at regional to local scales.
Such improvement would translate into an improved capability to monitor and forecast extreme
hazard and to attribute to human activity a more accurate part of global change. One the one hand
previous studies have succeed in optimizing ET using the water cycle closure as a constrain [11,12].
but such attempts was limited to global or catchment scale and raise limitation in generalizing ET
correction at higher scale [13]. Very recently, ML have leverage the use of hydroclimatic variables
and large catchment database for inferring pixelwise correction on precipitation atlas [14]. In this
work, we propose a method that corrects existing global ET datasets so as to better close the water
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cycle. Doing so presents two challenges: First, the water cycle constraint includes the R component,
which is only defined at the catchment scale, while we seek evaporation corrections at the pixel
scale. Second, R measurements are only sparsely available, so water cycle closure errors are only
available locally in space and time, while we aim to provide dense corrections to global ET datasets.
Our solution to both challenges is to use Machine Learning (ML) to generalize ET corrections from
sparse catchment levels to dense pixel level. We train a pixel-wise model to regress ET corrections
from globally available climatic indices, which allows us to generalize the learned corrections to
a dense pixel-wise resolution. Due to the nature of the R measurements, the supervision signal is
defined at the catchment level, so we train our model using a sum-aggregated supervision in which
we regress the sum of model outputs over catchment pixels to the catchment-level label. Our loss is
defined using a Maximum A Posteriori (MAP) formulation, in which we use prior knowledge on ET
uncertainties to guide the supervision.We evaluate the ability of learned corrections to close the water
cycle on unseen catchments and report consistent improvements across 4 global ET datasets. We also
compare ET corrections to in-situ measurements and report improvements on 3 out of 4 datasets.

2 Dataset

Figure 1 illustrates the location of training and
test catchments for which we have gathered data.
We investigate four different global ET datasets,
for each of which we learn and evaluate correc-
tions. Each dataset estimates ET using different
methodology and thus showcase different error

Latitude

patterns. These datasets are Global Land Evap- -] @ ~
oration Amsterdam Model [6] version va.3 and =~ «i | o [ :
vb.3, the Penman-Monteith-Leuning (PML) es- - - - : - s -
timate [7] and the reanalysis ERAS [8]. Our Longude

dataset contains 663 catchments (C) and covers Figure 1: Illustration of our dataset’s catchment
a time period (T') of 192 months ranging from locations and split.

January 2000 to December 20135, although many

months of data are missing for most catchments. In total, our dataset consists of 71654 monthly
catchment-level data points for which all components are available. Our model is defined at a spatial
resolution of 0.25 degrees, and a one month time resolution. It processes D = 7 dimension input
feature vectors, representing ET, P, dS, and four climatic indices representing vegetation cover (LAI
[8], NDVI [9]), soil moisture [8], and surface water availability (P-E from [8]). Given an ET dataset
E;, for each catchment ¢ € C' and for each month ¢ € T, the ground-truth correction y is given as
the difference y(c, t) = E(c,t) — E;(c, t), where E represent the best catchment-level water cycle
closure corrected estimate we have. F was computed using the Optimal Interpolation (OI) method
proposed in [10], which accounts for uncertainty estimates of all water cycle component and has
been shown to improve the catchment-level estimates of all components [11]. In addition, we used a
catchment-level simple-weighting aggregation [10] of all four ET datasets as the input ET component
to the OL. For each catchment and month index pairs (¢, t), our dataset thus provides an input output
pair (X (¢, t),y(c,t)). As each catchment covers many pixels, X represents a set of input feature
vectors X (¢, t) = {z,Vi € N(c)}, with z; € RP, N(c) represents the number of pixels covered by
catchment ¢, and D = 7 is the input feature dimension we use.

3 Method and Experiments

Our goal is to find a function fp(x) that regresses pixel-wise ET corrections y to ET values E from
input x, and we refer as £ = E + y to the corrected evaporation values. We take a probabilistic view
of ET datasets and their correction. We consider each dataset to provide us with prior knowledge

on ET in the form of a Gaussian distribution centered on E: p(E) = N'(E|o ). Following a recent
7-E

review paper [2], we use the relative uncertainty estimate o = {55 in our experiments. We can
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rewrite this prior in terms of y as P(y) = N (0|o). We define a likelihood over the correction y as
a Gaussian distribution whose mean we parameterize with a Multi Layer Perceptron (MLP) hg(z)
and with standard deviation o, which we calibrate on a validation set: p(y|z) = N (hg(z)|o,). The
correction fy(x) we bring to each dataset is then defined as a MAP given the prior P provided by the
dataset and the parameterized likelihood function p:

fo(z) = mazyp(y|z)P(y) 2
_ op X hy(z) +0x 07
fole) = =3 s 3
h
folw) = —1el) )
L+ 7><Ey

The rationale for this MAP formulation is that it allows to scale the correction with the original dataset
value: Indeed, ET estimates are, in absolute values, less error-prone in very dry regions (where ET is
close to zero) than in wet regions (where ET takes large values). The difference between using MAP
and likelihood corrections is illustrated in Figure 2. Although fy(z) is defined at the pixel level, the
supervision y is defined at the catchment level. To train the model, we thus first apply the model
on the pixels of each catchments, then aggregate the model output by summation, and regress the
aggregated sum of corrections to the label y. For a given catchment and month, the catchment level
correction computed by our model is thus:

Fyle,ty = > folw) ©)

z€X (c,t)

so that we can write our loss function £ and optimization problem as:

ee(Ca t) = FG(C7 t) - y(C, t) (6)
1
LO) =7 > eolet)’ )
ceC teT
0% = mingeo L£(0) ®)

We analyse the errors of ET datasets before and after our correction to better understand the nature
of the corrections we bring. To do so, we decompose residual errors into three components: a bias
term B that represents the average error per catchment, a seasonality term .S representing the errors
of monthly-averaged difference to the bias, and an anomaly term A that random variations after
elimination of the systemic bias ans seasonality components. We denote by M = {m;} to denote the
set of 12 months, and we write m(t) € M to denote the month of a given time index ¢ € T'. Given a
catchment ¢ € C' at time ¢ a residual term y can be decomposed into three component as follows:
e(e,t) = e(y,c) + e(y,c,m(t)) + e(y, ¢, t), in which:

ble,c) = %Ze(e,t) 9
teT

s(e,c,m) = % Z e(e,t) — by, c) (10)

a(ea & t) = 6(6, t) - b(ya C) - S(ya &) m(t)) (11)

Ignoring the cross terms, which were empirically found negligible, we can then decompose the loss
into three residual error components that give us more insights on the nature of the ET residual error.
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LO)=Y" (b(e, o) + % > s(e,em)’+ % > alee t)"’) (12)

ceC meM teT
L(0) = B(c)+5(c) + A(c) (13)
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Figure 2: Illustration of MAP impact.

We trained a MLP with 4 hidden layers of width 512 on a training set of 496 catchments using the
Adam [5] optimizer, and evaluated its accuracy on a test set of 166 catchments. Splits were built so
that no train catchment overlap, even partially, with the test catchments. We report generalization
results on the test split in terms of MSE, and decompose the error into the three components: B,S,A.
Impact of MAP modeling: Figure 2 compares the per-pixel mean corrections of the likelihood £y
and the MAP fy. The MAP successfully reduces the high biases of the likelihood above the Sahara
region in which ET is expected to remain close to zero for the absence of water.

Decomposition of water closure MSE before and after correction Decomposition of MSE to in-situ Flux
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Figure 3: MSE decomposition of ET estimates before (No Patch) and after (MAP) corrections. (a)
Water cycle closure error computed on the test split, (b) Distance to in-situ measurements.

Water cycle closure: Figure 3(a) shows the MSE of water cycle closure of each dataset before and
after applying our corrections. We successfully reduce the water closure gap on all components.In-
situ measurements: In Figure 3(b), we show the the MSE to in-situ measurements of the FLUX
dataset [15] before and after applying our learned corrections. We find corrected global ET values to
better fit in-situ measurements for three out of the four datasets.

4 Conclusion

Improving global ET estimates is needed to better our understanding of the global water cycle, so as
to better understand the consequences of climate change on the future of global water distribution. In
this work, we proposed a methodology to learn a correction of global ET datasets. Our method uses
ML to generalize sparse catchment-level water cycle closure residual information to global, dense,
pixel-level residuals. To do so, we modeled a pixel-level model that we trained to regress catchment-
level residuals using a sum-aggregated supervision. Using four global ET datasets, quantitative
experiments have shown the ability of our model to generalize to unseen catchments and to reach
relative agreement with in-situ measurements.
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