
Learning evapotranspiration dataset corrections from water cycle closure supervision

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Evapotranspiration (ET) is one of the most uncertain components of the global
2 water cycle. Improving global ET estimates is needed to better our understanding of
3 the global water cycle so as to forecast the consequences of climate change on the
4 future of global water resource distribution. This work presents a methodology to
5 derive monthly corrections of global ET datasets at 0.25 degree resolution. We use
6 ML to generalize sparse catchment-level water cycle closure residual information
7 to global and dense pixel-level residuals. Our model takes a probabilistic view on
8 ET datasets and their correction that we use to regress catchment-level residuals
9 using a sum-aggregated supervision. Using four global ET datasets, we show that
10 our learned model has learned ET corrections that accurately generalize its water
11 cycle-closure results to unseen catchments.

12 **1 Introduction**

13 In the context of Climate Change (CC), the demand on water resources is increasing as both flood
14 and drought related damages increase. Human activities are known to impact the global water
15 cycle. However observational uncertainties limit extreme hazard forecast capability and render
16 human contribution to CC trend estimates very challenging in the context of high natural climate
17 variability [1]. The main evidence of observational uncertainties and discrepancy in monitoring of
18 the hydrosphere is that the water cycle is still not closed [2]. The water cycle is modelled through
19 four components:, precipitation (P), evapotranspiration (ET), river discharge (R) and water storage
20 differential (dS). Closing the water cycle refers to accurately quantifying each of these components at
21 a given spatial and temporal resolution so that they sum to zero on all spatio-temporal locations:

$$P - ET - R + dS = 0 \quad (1)$$

22 Among the hydrosphere component, ET remains one of the most uncertain and elusive components of
23 Earth's water balance: it is a difficult physical process to sense as it cannot be observed directly from
24 space, and its field measurement via eddy-covariance method raise limited spatial representatives
25 [3]. Improving ET is needed for an advanced closure of the water cycle at regional to local scales.
26 Such improvement would translate into an improved capability to monitor and forecast extreme
27 hazard and to attribute to human activity a more accurate part of global change. One the one hand
28 previous studies have succeed in optimizing ET using the water cycle closure as a constrain [11,12].
29 but such attempts was limited to global or catchment scale and raise limitation in generalizing ET
30 correction at higher scale [13]. Very recently, ML have leverage the use of hydroclimatic variables
31 and large catchment database for inferring pixelwise correction on precipitation atlas [14]. In this
32 work, we propose a method that corrects existing global ET datasets so as to better close the water

33 cycle. Doing so presents two challenges: First, the water cycle constraint includes the R component,
 34 which is only defined at the catchment scale, while we seek evaporation corrections at the pixel
 35 scale. Second, R measurements are only sparsely available, so water cycle closure errors are only
 36 available locally in space and time, while we aim to provide dense corrections to global ET datasets.
 37 Our solution to both challenges is to use Machine Learning (ML) to generalize ET corrections from
 38 sparse catchment levels to dense pixel level. We train a pixel-wise model to regress ET corrections
 39 from globally available climatic indices, which allows us to generalize the learned corrections to
 40 a dense pixel-wise resolution. Due to the nature of the R measurements, the supervision signal is
 41 defined at the catchment level, so we train our model using a sum-aggregated supervision in which
 42 we regress the sum of model outputs over catchment pixels to the catchment-level label. Our loss is
 43 defined using a Maximum A Posteriori (MAP) formulation, in which we use prior knowledge on ET
 44 uncertainties to guide the supervision. We evaluate the ability of learned corrections to close the water
 45 cycle on unseen catchments and report consistent improvements across 4 global ET datasets. We also
 46 compare ET corrections to in-situ measurements and report improvements on 3 out of 4 datasets.

47 2 Dataset

48 Figure 1 illustrates the location of training and
 49 test catchments for which we have gathered data.
 50 We investigate four different global ET datasets,
 51 for each of which we learn and evaluate correc-
 52 tions. Each dataset estimates ET using different
 53 methodology and thus showcase different error
 54 patterns. These datasets are Global Land Evap-
 55 oration Amsterdam Model [6] version va.3 and
 56 vb.3, the Penman-Monteith-Leuning (PML) es-
 57 timate [7] and the reanalysis ERA5 [8]. Our
 58 dataset contains 663 catchments (C) and covers
 59 a time period (T) of 192 months ranging from
 60 January 2000 to December 2015, although many
 61 months of data are missing for most catchments. In total, our dataset consists of 71654 monthly
 62 catchment-level data points for which all components are available. Our model is defined at a spatial
 63 resolution of 0.25 degrees, and a one month time resolution. It processes $D = 7$ dimension input
 64 feature vectors, representing ET, P, dS, and four climatic indices representing vegetation cover (LAI
 65 [8], NDVI [9]), soil moisture [8], and surface water availability (P-E from [8]). Given an ET dataset
 66 E_i , for each catchment $c \in C$ and for each month $t \in T$, the ground-truth correction y is given as
 67 the difference $y(c, t) = E(c, t) - E_i(c, t)$, where E represent the best catchment-level water cycle
 68 closure corrected estimate we have. E was computed using the Optimal Interpolation (OI) method
 69 proposed in [10], which accounts for uncertainty estimates of all water cycle component and has
 70 been shown to improve the catchment-level estimates of all components [11]. In addition, we used a
 71 catchment-level simple-weighting aggregation [10] of all four ET datasets as the input ET component
 72 to the OI. For each catchment and month index pairs (c, t) , our dataset thus provides an input output
 73 pair $(X(c, t), y(c, t))$. As each catchment covers many pixels, X represents a set of input feature
 74 vectors $X(c, t) = \{x_i \forall i \in N(c)\}$, with $x_i \in \mathbb{R}^D$, $N(c)$ represents the number of pixels covered by
 75 catchment c , and $D = 7$ is the input feature dimension we use.

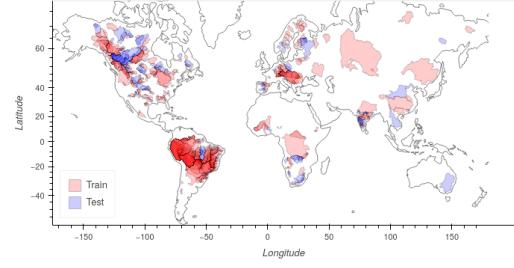


Figure 1: Illustration of our dataset’s catchment locations and split.

76 3 Method and Experiments

77 Our goal is to find a function $f_\theta(x)$ that regresses pixel-wise ET corrections y to ET values E from
 78 input x , and we refer as $\hat{E} = E + y$ to the corrected evaporation values. We take a probabilistic view
 79 of ET datasets and their correction. We consider each dataset to provide us with prior knowledge
 80 on ET in the form of a Gaussian distribution centered on E : $p(\hat{E}) = \mathcal{N}(E|\sigma_E)$. Following a recent
 81 review paper [2], we use the relative uncertainty estimate $\sigma_E = \frac{7 \cdot E}{100}$ in our experiments. We can

82 rewrite this prior in terms of y as $P(y) = \mathcal{N}(0|\sigma)$. We define a likelihood over the correction y as
 83 a Gaussian distribution whose mean we parameterize with a Multi Layer Perceptron (MLP) $h_\theta(x)$
 84 and with standard deviation σ_y , which we calibrate on a validation set: $p(y|x) = \mathcal{N}(h_\theta(x)|\sigma_y)$. The
 85 correction $f_\theta(x)$ we bring to each dataset is then defined as a MAP given the prior P provided by the
 86 dataset and the parameterized likelihood function p :

$$f_\theta(x) = \max_y p(y|x)P(y) \quad (2)$$

$$f_\theta(x) = \frac{\sigma_E^2 \times h_\theta(x) + 0 \times \sigma_y^2}{\sigma_y^2 + \sigma_E^2} \quad (3)$$

$$f_\theta(x) = \frac{h_\theta(x)}{1 + \frac{100 \times \sigma_y^2}{7 \times E}} \quad (4)$$

87 The rationale for this MAP formulation is that it allows to scale the correction with the original dataset
 88 value: Indeed, ET estimates are, in absolute values, less error-prone in very dry regions (where ET is
 89 close to zero) than in wet regions (where ET takes large values). The difference between using MAP
 90 and likelihood corrections is illustrated in Figure 2. Although $f_\theta(x)$ is defined at the pixel level, the
 91 supervision y is defined at the catchment level. To train the model, we thus first apply the model
 92 on the pixels of each catchments, then aggregate the model output by summation, and regress the
 93 aggregated sum of corrections to the label y . For a given catchment and month, the catchment level
 94 correction computed by our model is thus:

$$F_\theta(c, t) = \sum_{x \in X(c, t)} f_\theta(x) \quad (5)$$

95 so that we can write our loss function \mathcal{L} and optimization problem as:

$$e_\theta(c, t) = F_\theta(c, t) - y(c, t) \quad (6)$$

$$\mathcal{L}(\theta) = \frac{1}{T} \sum_{c \in C} \sum_{t \in T} e_\theta(c, t)^2 \quad (7)$$

$$\theta^* = \min_{\theta \in \Theta} \mathcal{L}(\theta) \quad (8)$$

96 We analyse the errors of ET datasets before and after our correction to better understand the nature
 97 of the corrections we bring. To do so, we decompose residual errors into three components: a bias
 98 term B that represents the average error per catchment, a seasonality term S representing the errors
 99 of monthly-averaged difference to the bias, and an anomaly term A that random variations after
 100 elimination of the systemic bias and seasonality components. We denote by $M = \{m_i\}$ to denote the
 101 set of 12 months, and we write $m(t) \in M$ to denote the month of a given time index $t \in T$. Given a
 102 catchment $c \in C$ at time t a residual term y can be decomposed into three component as follows:
 103 $e(c, t) = e(y, c) + e(y, c, m(t)) + e(y, c, t)$, in which:

$$b(e, c) = \frac{1}{T} \sum_{t \in T} e(c, t) \quad (9)$$

$$s(e, c, m) = \frac{M}{T} \sum_{t \in m} e(c, t) - b(y, c) \quad (10)$$

$$a(e, c, t) = e(c, t) - b(y, c) - s(y, c, m(t)) \quad (11)$$

104 Ignoring the cross terms, which were empirically found negligible, we can then decompose the loss
 105 into three residual error components that give us more insights on the nature of the ET residual error.

$$\mathcal{L}(\theta) = \sum_{c \in C} \left(b(e, c)^2 + \frac{1}{M} \sum_{m \in M} s(e, c, m)^2 + \frac{1}{T} \sum_{t \in T} a(e, c, t)^2 \right) \quad (12)$$

$$\mathcal{L}(\theta) = \sum_{c \in C} B(c) + S(c) + A(c) \quad (13)$$

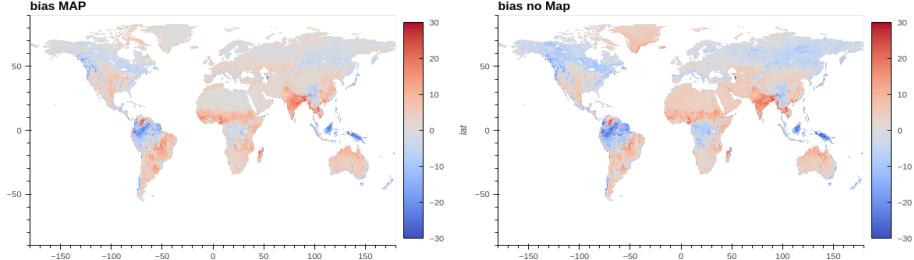


Figure 2: Illustration of MAP impact.

106 We trained a MLP with 4 hidden layers of width 512 on a training set of 496 catchments using the
 107 Adam [5] optimizer, and evaluated its accuracy on a test set of 166 catchments. Splits were built so
 108 that no train catchment overlap, even partially, with the test catchments. We report generalization
 109 results on the test split in terms of MSE, and decompose the error into the three components: B,S,A.
 110 **Impact of MAP modeling:** Figure 2 compares the per-pixel mean corrections of the likelihood h_θ
 111 and the MAP f_θ . The MAP successfully reduces the high biases of the likelihood above the Sahara
 112 region in which ET is expected to remain close to zero for the absence of water.

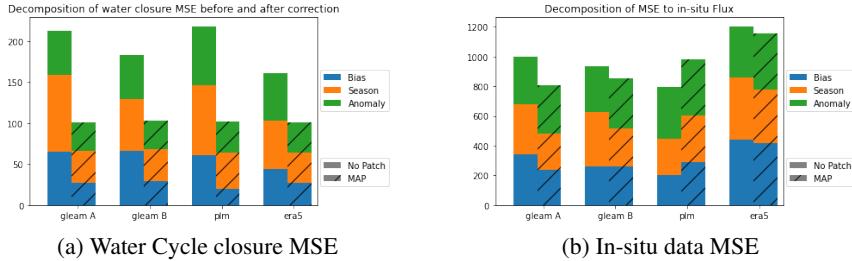


Figure 3: MSE decomposition of ET estimates before (No Patch) and after (MAP) corrections. (a) Water cycle closure error computed on the test split, (b) Distance to in-situ measurements.

113 **Water cycle closure:** Figure 3(a) shows the MSE of water cycle closure of each dataset before and
 114 after applying our corrections. We successfully reduce the water closure gap on all components. **In-**
 115 **situ measurements:** In Figure 3(b), we show the the MSE to in-situ measurements of the FLUX
 116 dataset [15] before and after applying our learned corrections. We find corrected global ET values to
 117 better fit in-situ measurements for three out of the four datasets.

118 4 Conclusion

119 Improving global ET estimates is needed to better our understanding of the global water cycle, so as
 120 to better understand the consequences of climate change on the future of global water distribution. In
 121 this work, we proposed a methodology to learn a correction of global ET datasets. Our method uses
 122 ML to generalize sparse catchment-level water cycle closure residual information to global, dense,
 123 pixel-level residuals. To do so, we modeled a pixel-level model that we trained to regress catchment-
 124 level residuals using a sum-aggregated supervision. Using four global ET datasets, quantitative
 125 experiments have shown the ability of our model to generalize to unseen catchments and to reach
 126 relative agreement with in-situ measurements.

127 **References**

128 [1] (Hegerl et al. 2015, <https://journals.ametsoc.org/view/journals/bams/96/7/bams-d-13-00212.1.xml>).

129 [2] (Dorigo et al 2021, <https://journals.ametsoc.org/view/journals/bams/102/10/BAMS-D-19-0316.1.xml>).

130 [3] (Miralles et al. 2011, <https://doi.org/10.1111/nyas.13912>; Fisher et al. 2017, <https://doi.org/10.1002/2016WR020175>.)

132 [4] Kingma, Diederik P., and Jimmy Ba. "Adam: A Method for Stochastic Optimization." ICLR (Poster). 2015.

133 [6] Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., Verhoest, N.E.C., 2016. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussions , 1–36URL: <http://www.geosci-model-dev-discuss.net/gmd-2016-162/>, 937 doi:10.5194/gmd-2016-162.

137 [7] Zhang, Y., Peña-Arancibia, J., McVicar, T. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. *Sci Rep* 6, 19124 (2016). <https://doi.org/10.1038/srep19124>

138 [8] Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. In ECMWF Newsletter No. 159; Lentze, G., Ed.; European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2019; pp. 17–24.

143 [9] The MOD13Q1 product, DOI: 10.5067/MODIS/MOD13Q1.006

144 [10] Aires, F.(2014). Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure. *J. Hydrometeorol.*, 15 (4), 1677–1691.doi: 10.1175/JHM-D-13-0148.1

146 [11] Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., Dorigo, W. A., Polcher, J., and Brocca, L.: Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region, *Hydrol. Earth Syst. Sci.*, 23, 465–491, <https://doi.org/10.5194/hess-23-465-2019>, 2019.

150 [12] Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., Wood, F. E. (2012). Multisource estimation of long-term terrestrial water budget for major global river basins. *J. Clim.*, 25 (9), 3191–3206. doi:10.1175/JCLI-D-11-00300.1

153 [13] Munier, S., Aires, F. (2018). A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget. *Remote Sens. Environ.*, 205 (October 2017), 119–130. doi: 10.1016/j.rse.2017.11.008

156 [14] Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., Karger, D. N. (2020). Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments, *Journal of Climate*, 33(4), 1299–1315. Retrieved Sep 13, 2022, from <https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0332.1.xml>

160 [15] Pastorello, G., Trotta, C., Canfora, E. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. *Sci Data* 7, 225 (2020). <https://doi.org/10.1038/s41597-020-0534-3>