

NAVAL
POSTGRADUATE
SCHOOL

Bridging the Microwave Data Gap: Using Bayesian Deep Learning to “See” the Unseen

NeurIPS 2022 Workshop
Tackling Climate Change with Machine Learning

Pedro Ortiz^a, Eleanor Casas^b,

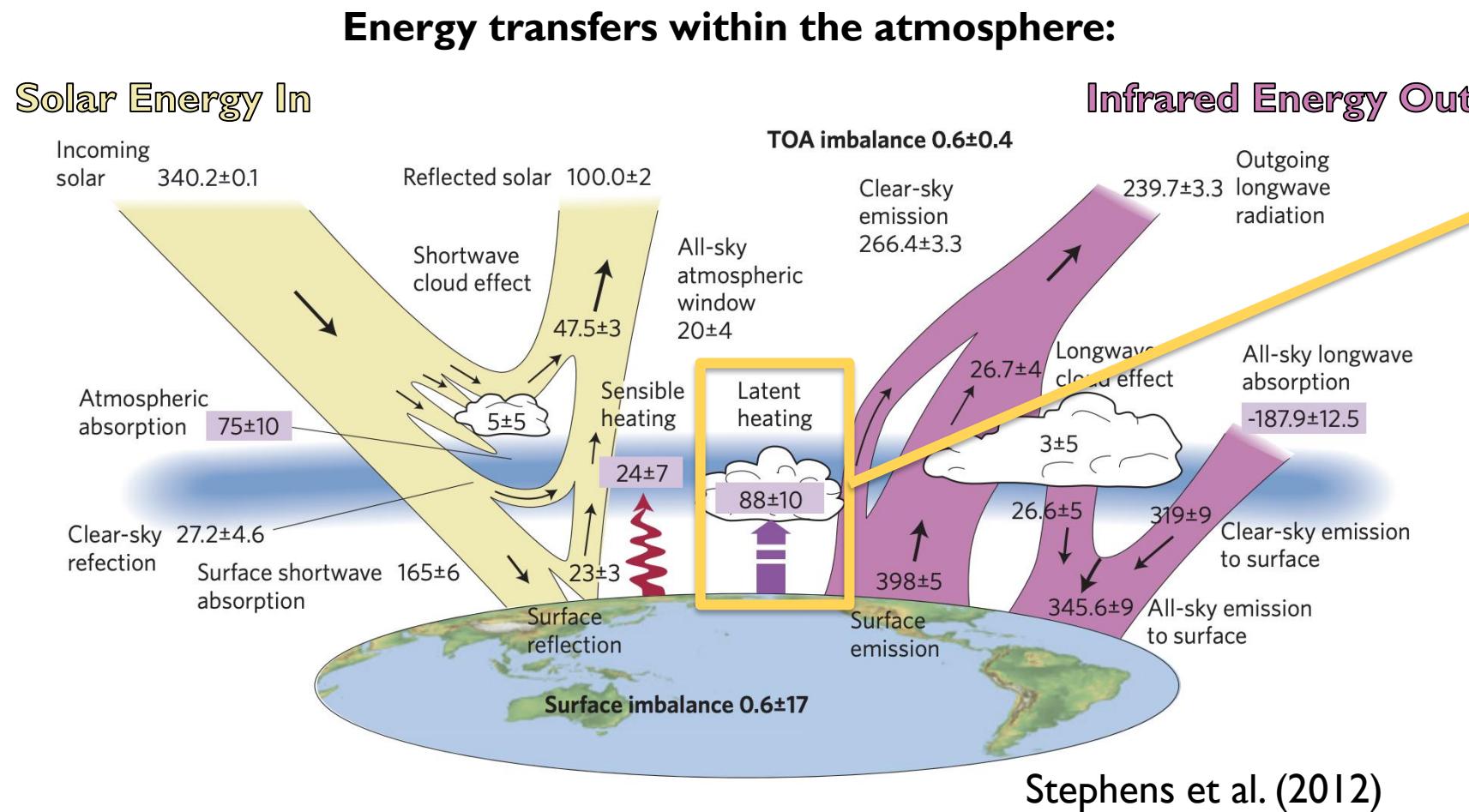
Marko Orescanin^a, Scott W. Powell^b

^a Computer Science Department

^b Meteorology Department

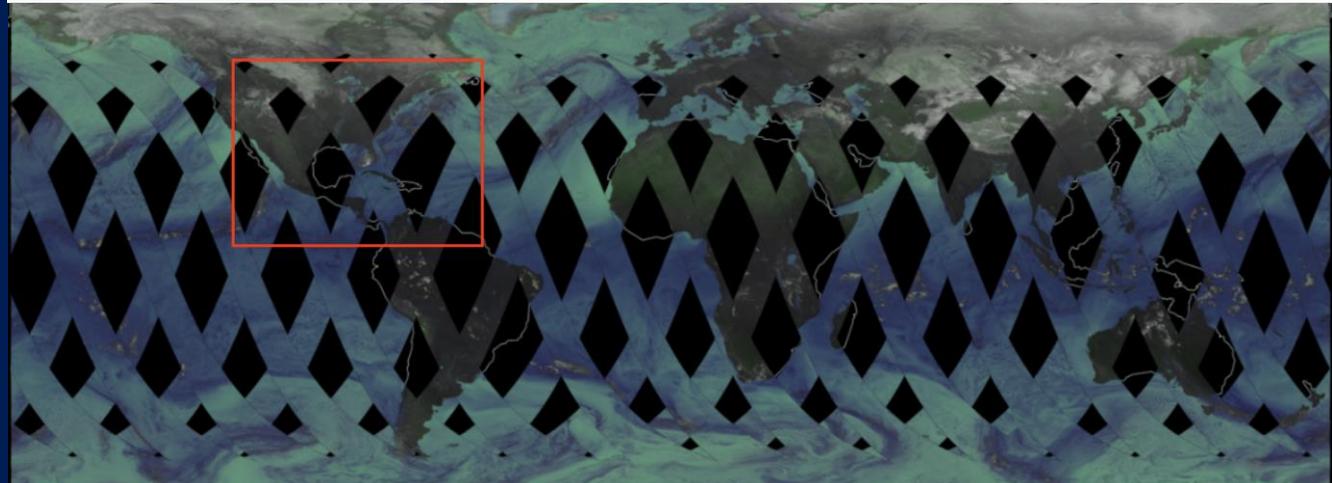
This work has been supported by: The Office of Naval Research grants N0001421WX00575 and N0001422WX01251

On Climate Scales, Energy In \approx Energy Out



There is large uncertainty on how much energy is transferred within clouds in the global annual mean energy budget because it's difficult to remotely sense inside clouds around the globe without large data gaps

Features		Labels	
Data	GOES-16 ABI Bands 7-16 (Near IR and IR) TBs	Data	GMI TBs for each channel
Spatial Resolution	1 km ² at Nadir	Spatial Resolution	Channels range from 32 km ² to 624 km ² at Nadir
Temporal Resolution	Full Disk picture every 10-15 min	Temporal Resolution	Swath passes Equator every 45 min on avg.

Scientific Objectives and Methods

Use Bayesian Deep Learning to create a synthetic product of microwave data and variances with the spatial and temporal resolution of IR data

1

Collocate IR and microwave pixels that are sampled at the same place and time

2

Train a 56-layer Bayesian ResNet with convolutional Flipout Layers and the ELBO loss function

3

Output both Microwave TBs and variance at IR resolutions

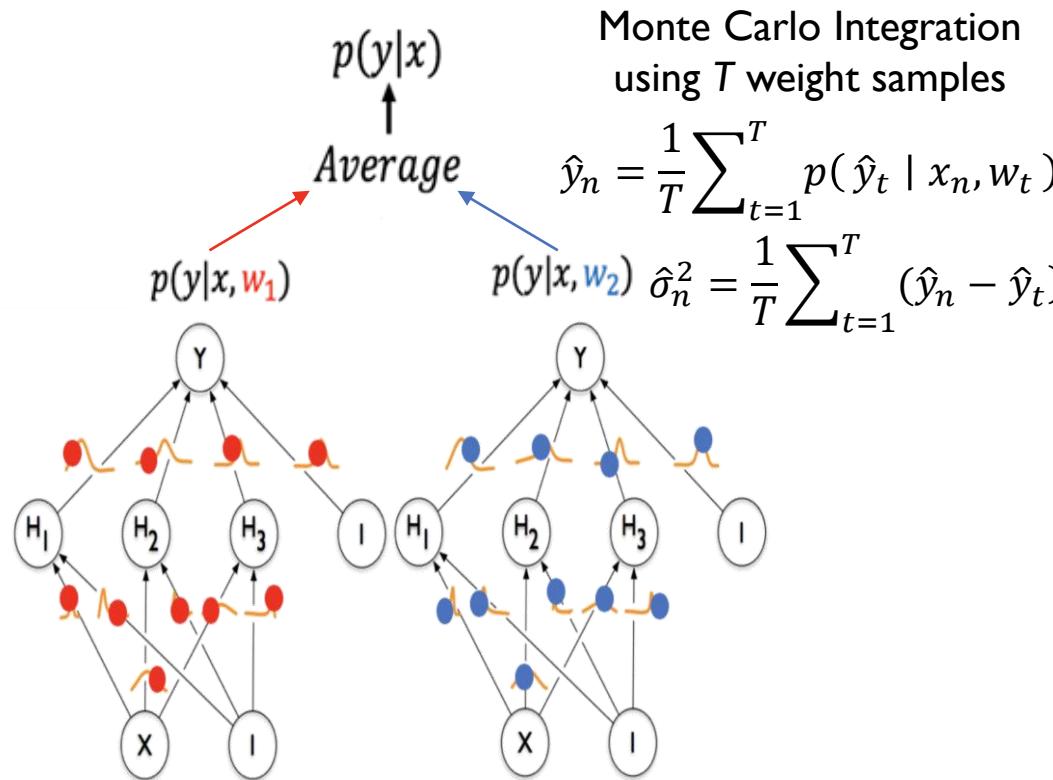
4

Decompose resulting variance into epistemic and aleatoric components

Impact:

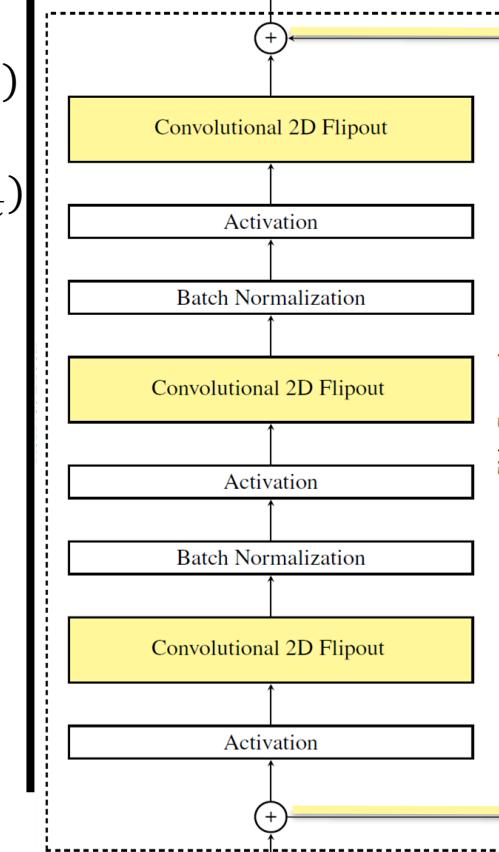
Atmospheric scientists can use the resulting product to learn more about our atmosphere and improve many models and forecasts

Why Bayesian Deep Learning?



Adapted from: McClure, P., Rho, N., Lee, J.A., Kaczmarzyk, J.R., Zheng, C.Y., Ghosh, S.S., Nielson, D.M., Thomas, A.G., Bandettini, P. and Pereira, F., 2019. Knowing What You Know in Brain Segmentation Using Bayesian Deep Neural Networks. *Frontiers in Neuroinformatics*, 13, p.67.

Bayesian ResNet Block



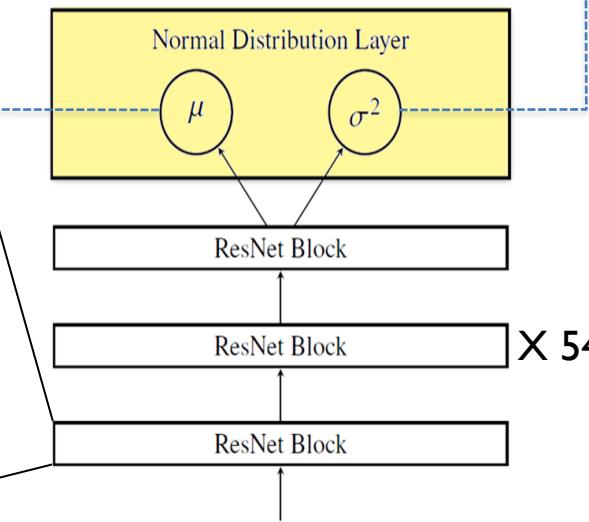
Monte Carlo Integration using mixture of Normal Distributions

$$\hat{y}_n = \frac{1}{T} \sum_{t=1}^T N(\mu_t(x_n, \mathbf{w}_t), \sigma_t^2(x_n, \mathbf{w}_t)) = (\hat{\mu}_n, \hat{\sigma}_n^2)$$

$$\hat{\mu}_n = \frac{1}{T} \sum_{t=1}^T \hat{\mu}_t(x_n, \mathbf{w}_t)$$

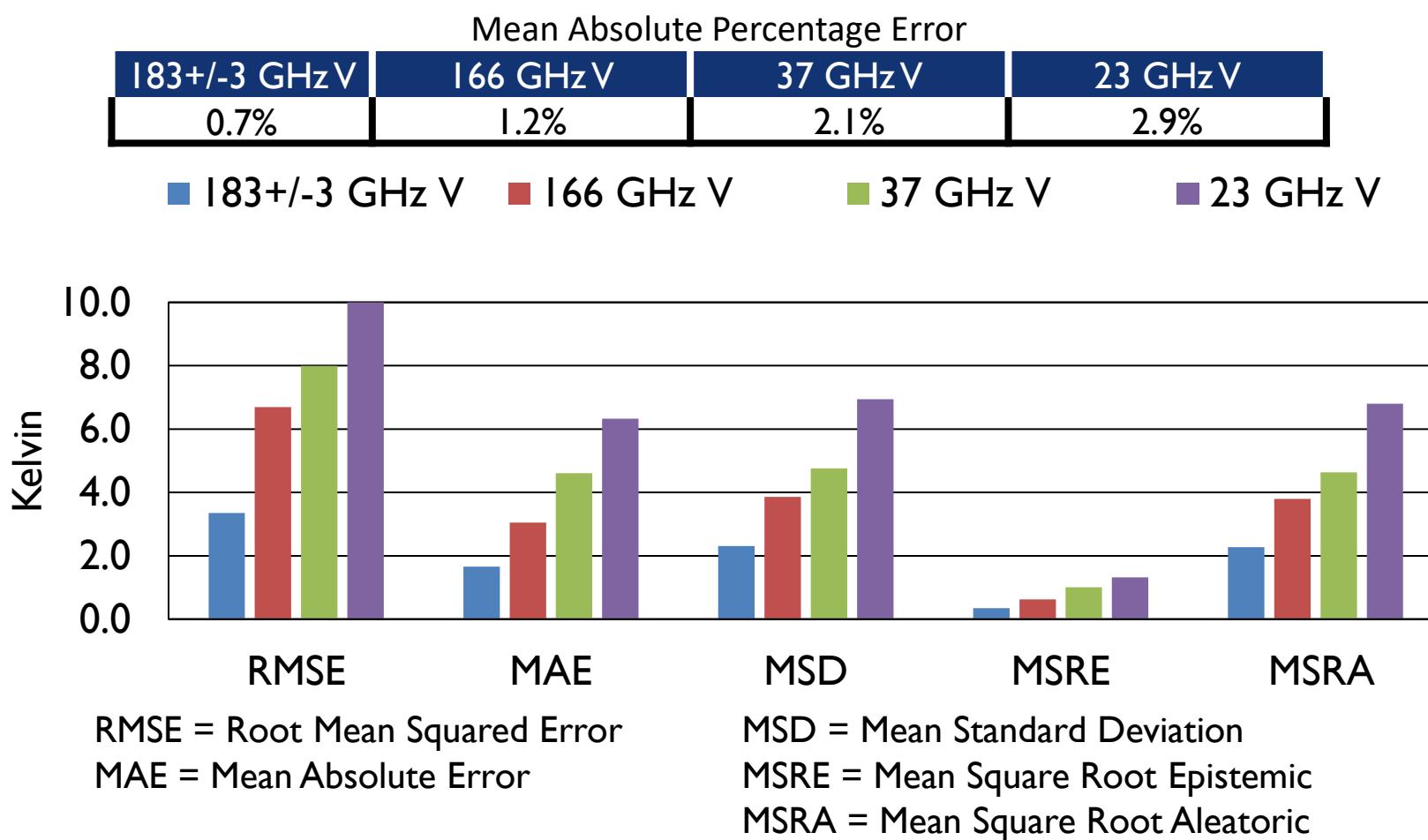
$$\hat{\sigma}_n^2 = \frac{1}{T} \sum_{t=1}^T \underbrace{\hat{\mu}_t^2(x_n, \mathbf{w}_t) - \hat{\mu}_n^2}_{\text{Epistemic Uncertainty}} + \underbrace{\hat{\sigma}_t^2(x_n, \mathbf{w}_t)}_{\text{Aleatoric Uncertainty}}$$

Bayesian ResNet with Normal Distribution Output



X 54

Results



- Higher frequency MW Tb easier to predict
- Relative level of uncertainty matches level of error
- Aleatoric component is the main source of uncertainty
- Epistemic uncertainty for lower frequencies may be reduced with more data to reduce error

Scientific Impact of Product

Climate Scientists

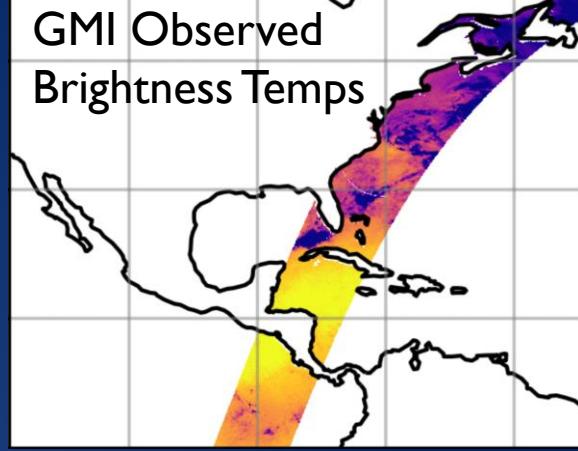
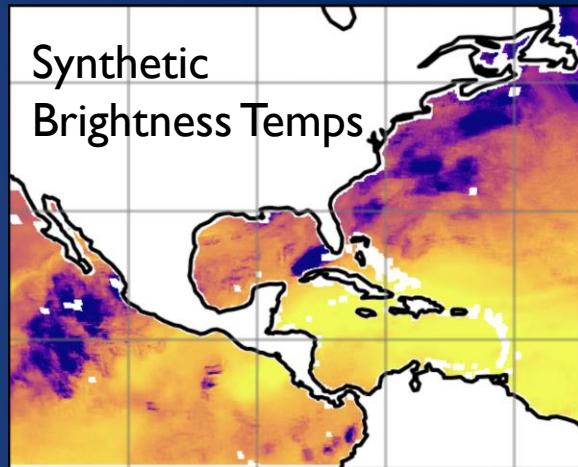
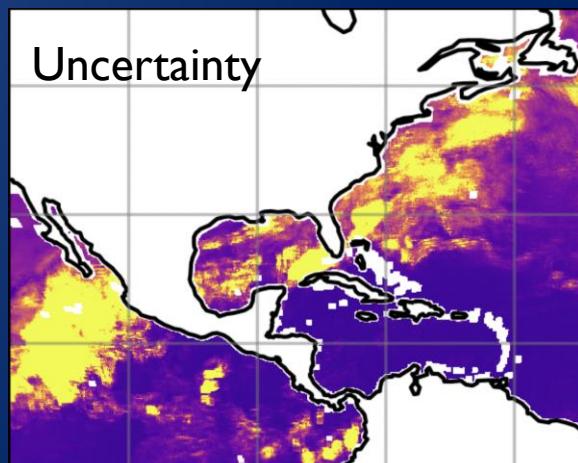
- Could reduce uncertainty in energy budget by using product to create less uncertain cloud and precipitation climatologies

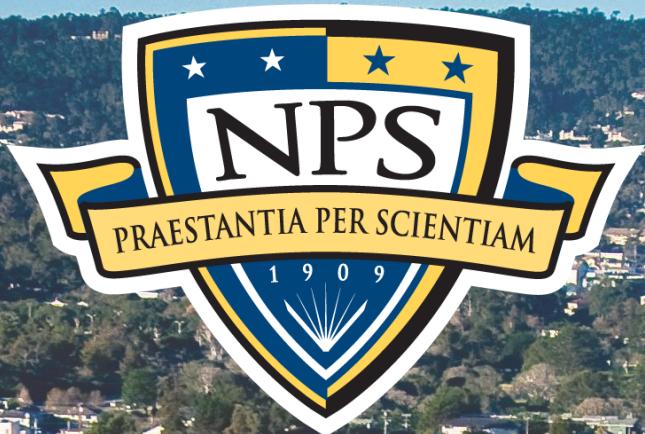
Real-Time Forecasters

- Could finally track evolution of oceanic deep convection in near-real-time
 - E.g. Hurricanes

Data Assimilation

- Could assimilate more microwave data into weather models and potentially increase forecast skill





Questions?

Email: pedro.ortiz@nps.edu

