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GOES-16 ABI Bands 7-16 (Near IR and IR) TBs GMI TBs for each channel
| km? at Nadir Channels range from 32 km? to 624 km?at Nadir

Full Disk picture every 10-15 min Swath passes Equator every 45 min on avg.
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Scientific Objectives and Methods

Use Bayesian Deep Learning to create a synthetic product of microwave data and variances with the spatial and temporal resolution of IR data
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Impact:
Atmospheric

scientists can use the
resulting product to
learn more about
our atmosphere and
improve many
models and forecasts




Monte Carlo Integration using
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Results

Mean Absolute Percentage Error
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RMSE = Root Mean Squared Error MSD = Mean Standard Deviation
MAE = Mean Absolute Error MSRE = Mean Square Root Epistemic

MSRA = Mean Square Root Aleatoric

Higher frequency
MW Tb easier to
predict

Relative level of
uncertainty matches
level of error

Aleatoric

component is the
main source of
uncertainty

Epistemic
uncertainty for
lower frequencies
may be reduced with
more data to reduce
error




GMI Observed
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Questions?
. pg_dro.ortiz@np_ .edu
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