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Abstract

Having microwave data with the spatial and temporal resolution of infrared data
would provide a large positive impact on many climate and weather applications.
We demonstrate that Bayesian deep learning is a promising technique for both cre-
ating and improving synthetic microwave data from infrared data. We report 0.7%
mean absolute percentage error for 183±3 GHz microwave brightness temperature.
Based on quantified uncertainty metrics, we find that more training data is needed
to achieve improved performance at 166 GHz, 37 GHz, and 23 GHz. Analysis of
the spatial distribution of uncertainty reveals that additional cloud data will provide
the greatest increase in skill, which will potentially allow for generation of many
secondary products derived from microwave data in the future.

1 Introduction

Background. To fully understand and simulate how the Earth’s climate is changing, climate
scientists need to understand end-to-end how energy is transferred into, within, and out of the Earth’s
climate system at all wavelengths and time scales [23, 15, 22]. While much progress has been
made towards closing this complete energy transfer “budget” since the development of weather
satellites [6, 25, 23, 22], one of the larger remaining sources of uncertainty is the net amount of latent
heat exchange [22], which occurs when water either absorbs or releases energy to the surrounding
environment as it changes phase between solid, liquid, and gas in various weather phenomena.

However, uncertainty about the total amount of global atmospheric water at any given time remains
because no single observing instrument can fully observe the distributions of each water phase over
a large area at high temporal resolution. For example, infrared (IR) wavelengths measured by the
Advanced Baseline Imager (ABI; [20]) on the geostationary GOES-16 satellite provide continuous
observations with high spatial resolution over a large domain (e.g. Fig. 1a). However, ABI IR
observations in cloudy or moist regions are mostly representative of emission from cloud tops or
the middle troposphere due to absorption of IR radiation by water vapor and scattering by in-cloud
hydrometeors. Since most latent heat exchange in precipitating clouds occurs within and below
clouds, additional information provided by the longer, less scattered microwave (MW) wavelengths
measured by the Global Precipitation Mission Microwave Imager (GMI; [7]), are needed to penetrate
liquid water and ice clouds and retrieve precipitation structure [18]. However, spatial resolutions for
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(b) Labels
Data GMI TBs for each channel

Spatial Resolution Channels range from 32 km2 to 624 km2 at Nadir

Temporal Resolution Swath passes Equator every 45 min on avg.

(a) Features
Data GOES-16 ABI Bands 7-16 (Near IR and IR) TBs

Spatial Resolution 1 km2 at Nadir

Temporal Resolution Full Disk picture every 10-15 min 

(c) Scientific Objectives and Methods
Use Bayesian Deep Learning to create a synthetic product of microwave data and variances with the spatial and temporal resolution of IR data

Collocate IR and 
microwave 

pixels that are 
sampled at the 
same place and 

time

Train a 56-layer 
Bayesian 

ResNet with 
convolutional 
Flipout Layers 
and the ELBO 
loss function

Output both 
Microwave TBs 
and variance at 
IR resolutions

Decompose 
resulting 

variance into 
epistemic and 

aleatoric 
components

Impact: Atmospheric 
scientists can use the 
resulting product to 

learn more about our 
atmosphere and 
improve many 

models and forecasts

Figure 1: Executive summary of this study, where: (a) training dataset features are the brightness
temperatures (TBs) measured by GOES-16 ABI Bands 7–16 (near IR and IR wavelengths) and are
exemplified by full disk imagery from 17:40 UTC on 12 Sep. 2022 [2]; (b) training dataset labels are
the microwave TBs from GMI, and are exemplified by the global, full-day GMI coverage on 01 Feb.
2020, where shading denotes data coverage [1, 16], black denotes data gaps, and the red box denotes
the domain in Fig. 2; and (c) a flowchart outlines the methods and scientific impact.

MW data are much coarser, and there are very large gaps between the narrow data “swaths” due to
the low-earth orbits of MW satellites (Fig. 1b). This means that a large portion of global atmospheric
water is persistently unsampled, which negatively impacts a wide variety of climate and weather
applications, including models, forecasts, and scientific understanding [18, 24, 22, 21, 19].

Scientific Goals and Impact. In this study, we seek to use Bayesian deep learning to create a new
product of synthetic MW brightness temperatures (TBs) that combines both the high spatial and
temporal resolutions of IR data and information of water distributions below cloud tops (Fig. 1c).
Additionally, we seek to provide an estimate of the variance of predicted TB values at each pixel to
help both scientists and downstream applications discern whether or not each predicted MW TB has
skill. Furthermore, by decomposing variance into its aleatoric and epistemic components, we seek
to help scientists discern whether predictive skill from our product can be improved with additional
training data (e.g. high epistemic uncertainty) or if there is inherent atmospheric variability that
warrants further scientific investigation into the utility of the model (e.g. high aleatoric uncertainty).

This new product of both synthetic MW TBs and estimated variance could then be utilized by
atmospheric scientists to generate far-reaching, downstream impacts wherever existing MW data are
currently being used in models, forecasts, and scientific analysis. With this new synthetic product,
atmospheric scientists would be able to investigate individual weather processes using synthetic
MW data that has a temporal resolution of 10–15 min over entire ocean basins for the first time.
This would allow for near real-time analysis and characterization of high-impact, quickly evolving
mesoscale phenomena. In comparison, current GMI MW data swaths typically only partially sample
a tropical cyclone approximately 3–4 times per day. While optimizing the synthetic MW product’s
skill will require additional training data, we demonstrate a pathway towards an ideal product.

2 Data and Methods

Data and Dataset Construction. To create our dataset, we first selected 10% of all GMI swaths (every
tenth file from an S3 bucket) during the study period, which kept the training dataset manageable
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Error Metrics Uncertainty Metrics
GMI Frequency RMSE MAE MAPE MSD MSRE MSRA
183±3 GHz V 3.356 K 1.657 K 0.7% 2.307 K 0.352 K 2.276 K

166 GHz V 6.692 K 3.049 K 1.2% 3.857 K 0.625 K 3.795 K
37 GHz V 7.995 K 4.606 K 2.1% 4.758 K 1.013 K 4.638 K
23 GHz V 9.999 K 6.329 K 2.9% 6.940 K 1.323 K 6.802 K

Table 1: Results using models trained on 11,844,000 sample from Jan-Apr to generate synthetic GMI
data using the May test dataset. RMSE = Root Mean Squared Error, MAE = Mean Absolute Error,
MAPE = Mean Absolute Percentage Error, MSD = Mean Standard Deviation, MSRE = Mean Square
Root Epistemic Uncertainty, MSRA = Mean Square Root Aleatoric Uncertainty, K = Kelvin.

given our computing resources. Next, we collocated ABI and GMI observations by labeling 39×39
pixel ABI patches from bands 7–16 (near-IR and IR) with the GMI Tmw

b corresponding to the center
ABI pixel location. Any records containing an ABI patch with a pixel over land were discarded.

We trained our models using data collected during the first four months of 2020 (January through
April). We used the 1st, 10th, and 20th days from January through April for the validation set; we
used the remaining days as a training set. We held out the first 12 days of May as a test set.

Bayesian Deep Learning (BDL). In BDL, we assume distributions over weights, w, of a neural
network. If p(w) is a prior distribution over w and p(D) is a distribution over the training data, then
the goal of a Bayesian deep learning is to quantify a posterior distribution over the network weights
conditioned on the distribution of the training data, p(w | D). For high dimensional problems, the
calculation of p(w | D) has no closed formed solution making it intractable [4].

We use variational inference to approximate p(w | D) via the evidence lower bound (ELBO) [4] by
implementing a 56-layer Bayesian Residual Network (ResNet) version 2 [11] model architecture,
using convolutional Flipout layers [26]. This model architecture performs heteroscedastic regression,
where the model outputs the parameters of a Gaussian distribution, µ and σ2, using a pre-built
distribution layer from the Tensorflow Probability library version 0.12.1 [5].

Since our models have distributions over weights, we use Monte Carlo integration to conduct model
inference [8, 9], sampling from the weight distribution T times and averaging over the output values.
Following the approach described in [9], we chose T = 100 to calculate ŷn. As the output of our
regression models represents the parameters of a Normal distribution, we calculate ŷn as a mixture of
Normal distributions [14] with uniform mixture weights:

ŷn =
1

T

T∑
t=1

N (µt(xn,wt), σ
2
t (xn,wt)) = (µ̂n, σ̂

2
n) (1)

where 1
T

∑T
t=1 µt(xn,wt) = µ̂n is the model’s predicted Tmw

b based on the Tir
b input features.

Following the law of total variance, we calculate the variance of the ŷn mixture distribution as:

σ̂2
n =

1

T

T∑
t=1

σ̂2
t (xn,wt)︸ ︷︷ ︸

Aleatoric Uncertainty

+ µ̂2
t (xn,wt)− µ̂2

n︸ ︷︷ ︸
Epistemic Uncertainty

(2)

where σ̂2
t (xn,wt) and µ̂2

t (xn,wt) are the outputs of the last layer of the model (heteroscedastic
regression).

Our BDL models quantify both aleatoric and epistemic uncertainty (see Eq. 2). Aleatoric uncertainty
is irreducible [13], and epistemic uncertainty can be reduced given enough data [12]. Quantifying
heteroscedastic aleatoric uncertainty using deterministic models was previously demonstrated to lead
to better performance on geoscience regression tasks [3, 10]. The addition of epistemic uncertainty
through BDL can help identify out-of-distribution samples (concept drift) [17] and data distributions
that would be beneficial for additional training to improve a model’s skill on a given task.

3 Results and Discussion

Table 1 shows the mean error and uncertainty statistics for the vertically polarized GMI channels of
183±3 GHz, 166 GHz, 37 GHz, and 23 GHz. The less than 1% MAPE produced at 183±3 GHz is an
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Figure 2: (a) ∼ 15 minutes of GMI Observations (b) Synthetic Tmw
b generated from 15-minutes of

ABI data (GPM orbit number 33679 at 1440 UTC 1 Feb 2020) corresponding to the box in Fig. 1. (c)
Standard deviation of each Tmw

b in (b).

example of how well neural networks can learn any non-linear function with a large enough training
dataset (∼ 12 million examples), and is expected to have the highest skill since, like the ABI Band 8
where water vapor is present, this GMI channel also primarily senses the upper troposphere. The
1.2% MAPE at 166 GHz is also encouraging, since it primarily senses the mid- to upper-troposphere.
The MAPE for 37 GHz and 23 GHz indicates that the model did not learn as well at these frequencies
and may require more training data. This skill degradation is also consistent with remote sensing
characteristics, since these channels “see” lower in the troposphere and are less similar to the IR
features in cloudy regions. However, just having the Tmw

b output does not indicate whether influences
from the surface or within clouds are the primary source of error. We can make this determination by
reviewing the uncertainty metrics.

The epistemic (model parameter) uncertainty for the 183±3 GHz model is approaching zero (Table 1),
indicating that the training data is representative of the underlying data distribution. Conversely, the
37 GHz and 23 GHz models have epistemic uncertainty that is more than three times that of the
183±3 GHz model. Therefore, the error metrics for these models are likely to decrease if they are
trained on more data that is representative of the underlying distribution. Furthermore, examination
of the spatial distribution of the predicted standard deviations in Fig. 2 shows that a greater source of
uncertainty results from clouds, not the surface. Thus, our synthetic MW product directly shows that
providing additional cloud training data would most benefit (of the ones shown here) the 23 GHz
channel and least benefit the 183±3 GHz channel.

4 Conclusion

Without the context of the decomposed uncertainty metrics, the error metrics for 37 GHz and 23 GHz
could be interpreted to mean that our network architecture is not suitable for this regression task.
However, the MSRE (model parameter uncertainty) indicates that the error metrics for 37 GHz and
23 GHz could be reduced by training on additional data, and the spatial distribution of uncertainty
shows that specifically cloud data would provide the most benefit. Thus, we find BDL a promising
technique for creating more synthetic MW data from 15 minutes of ABI IR data (e.g. Fig. 2b) than is
available from 24 hours of GMI MW data collection (e.g. Fig. 1b).

As we continue to utilize our uncertainty decomposition methodology to improve the predictive skill
of MW TBs from IR TBs, we hope to provide a highly useful synthetic product for atmospheric
scientists. The extreme boost in both spatial and temporal resolution provided by our synthetic
product allows atmospheric scientists to perform previously impossible analyses in the MW spectrum,
such as how individual oceanic storms contribute towards the energy budget. Furthermore, the
large, continuous spatial coverage would allow scientists to investigate interactions across many
time and space scales, which could lead to increased scientific understanding of weather and climate
interactions and more accurate model physics. Additionally, MW data and uncertainties can be
assimilated into models to improve simulated structures, which could lead to more accurate forecasts.
Furthermore, since MW imagery is also used in real-time forecasts of hurricane intensity and other
extreme weather phenomena, forecast lead times for high-impact events could also be increased,
which helps mitigate loss of life and property. Finally, the uncertainty metrics provided by our product
allows atmospheric scientists to assess which predictions are most trustworthy, which can further
improve interpretation of the product and facilitate widespread adoption.
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