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The problem

= Can we learn hi-res precipitation from
coarse, global climate simulation
output?

= High-resolution climate simulations are
expensive

= New probabilistic ML methods could
complement simulations with more hi-res
samples
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Dataset: Met Office UKCP18

= Projections over UK
—Global Climate Model (GCM) @ 60km

—Convection Permitting Model (CPM) @
2.2km

=12 CPM ensemble members
—60 years each (3 x 20 year chunks)
—1 emission scenario
—Daily (and sub-daily available)
In practice currently:
= 64x64 patch for reasons of computational resources
= 8.8km resolution to cover all of England and Wales
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Approach

= Training: coarsened CPM variables = hi-res CPM precip

= Sampling: coarsened CPM OR GCM variables = hi-res
CPM-like precip

= Use variables which are well-represented in GCMs and

physically drive rainfall (without being strongly
affected by it)

—Wind
—Temperature
—Humidity



Diffusion Models

AKA Score-based Generative Models

Forward SDE (data — noise)
Offer good trade-offs x(0) dx = £(x, t)dt + g(t)dw —»@

IN.

= Sample diversity

| score function
= Sample sharpness dx = [£(x,t) — (t) ) dt + g(t)dw @

= Sampling cost Reverse SDE (noise — data)

Song, Y. et al., 2021. Score-Based Generative Modeling through Stochastic
Differential Equations’, International Conference on Learning Representations.




Coarsened CPM vorticity@850hPa - 8.8km
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Based on a validation set of 4,320 randomly selected days




Coarsened CPM vorticity@850hPa - 8.8km

CPM rainfall
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Future work

= More conditioning input variables

= I[mprove performance when transferring to GCM inputs (e.g. better
transforming of inputs)

= Samples from large ensembles of coarse climate models
= Sub-daily frequency and temporal sequences

= More extreme Extremes: 1-in-100 years
= Long-range spatial correlations



Summary

= Hi-res simulations are expensive

= Use much cheaper stochastic ML to complement hi-res projections
like UKCP18

= First demonstration of diffusion models to predict CPM precipitation

Any questions or suggestions? henry.addison@bristol.ac.uk
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