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Flood disasters are increasing in frequency and magnitude
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Places with social vulnerability have the greatest flood risk
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Near Real-Time Flood Mapping

>> Enables decision makers, relief
agencies, and citizens to make
informed decisions and provide
direct relief where it is needed most.

Cloud to Street



Cloud to Street

Satellite can observe surface flooding

Optical Satellite Observation Floodmap
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Satellite can observe surface flooding

RADAR Satellite Observation Floodmap
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Clouds and low-revisit periods limit satellite reliability

Southern Texas, Louisiana during Hurricane Harvey



Flood Mapping Technology

Public Satellite
Observations

Strengths Low runtime computational
complexity

Scalable “observed truth”

Limitations Cloud, canopy cover

Low revisit time
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Hydraulic and Hydrologic Models

High temporal resolution

High spatial resolution

Need high-quality geographic features
and infrastructure information

Runtime computational complexity

Slow to scale to new regions
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Moving Beyond Direct Observations

>> How can we fuse state-of-the-art
flood maps from direct
observation with more frequent
(hourly, daily) modeled products
to produce the necessary daily
flood maps for disaster
monitoring?
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Deep Hydrology:
Leveraging strengths of Observations and Models
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Deep Hydrology:
Leveraging strengths of Observations and Models
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Deep Hydrology:
Leveraging strengths of Observations and Models
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Deep Hydrology:
Leveraging strengths of Observations and Models
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Experimental Setup

e [nputs
o 72 hour routing aggregate
o 72 hour soil moisture aggregate
o static flow direction, flow accumulation
o global surface water (gsw)*
e Target: MODIS Constellation Flood Maps in the United States
o Selected based on geographic distribution, visibility
e 06865 examples divided in 3 cross-validation folds and a test set

e Model selection:
o Take best models based on held-out validation metrics and evaluate on unseen
case studies. Select best based on case study performance (qualitative +
quantitative)

ClOUd tO Street *Pekel, Jean-Francois, et al. "High-resolution mapping of global surface water and its long-term changes." Nature 540.7633 (2016): 418-422.



Quantitative Results

>> RMSE excluding True Negatives

Pixel Grouping

Never-Flooded

Flooded Before

Cloud to Street

RMSE
0.063 +/-0.014

0.069 +/-0.02
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Case Study: Houston

>> Can our model separate
storms that caused flooding
from those that did not?
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Case Study: Hurricane Harvey

Daily Satellite
observations from public
sensors

Daily Modelled Flooding

Cloud to Street

0.02

Fractional Water

1.0




Our model can capture exposure to flood damage

where other hurricane risk factors do not (ex. wind)

Daily-Map Index (Flooded Area)
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Within the Houston AOI, we can separate events that cause flooding

(Harvey, Nicholas, Imelda), from those that do not (Laura, Rita)
Daily-Map Index (Flooded Area)
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Daily Flood Monitoring

>> Using high-quality, satellite-derived flood maps,
we are able to produce hourly flood extent
maps from the hydrological states produced by
the National Water Model that mirror the extent
and intensity of major flood events in the US.

We can distinguish the severity of different
flooding events across history.
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Future Work

1. Integrating sources of flooding beyond precipitation-driven data
2. Increased resolution
3. Globalization
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