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Al/ML achieves state-of-the-art performance
iIn many domains:

At last — a computer program that
can beat a champion Go player PAGE484
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But...

clips show owners of Teslas
Bl and experts see deep flaws

psted by beta testers and had it reviewed by a panel of experts

General question: Can we endow Al/ML algorithms with
worst-case performance guarantees?

“Robustifying” the performance of black-box ML
algorithms for generation dispatch




Problem setting:
Generation dispatch with ramp costs

0y

Generation operator faces a sequential problem:

1. At time ¢, observe ambient conditions 0,
(demand, wind, sun, temperature, etc.)

2. Choose dispatch level(s) x, € X,

3. Pay fuel cost f(x;; ) and ramp cost ||x, — x,_|| .
Ay

T
Total cost: Z f(x;0) + ||x, — x,_{||
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Often (potentially inaccurate) predictions
Ori11r5 -+ +» Orp OF future conditions are available



Dispatch algorithms In practice

GREEDY : 0; — arg min f(x; 0;) =: x;.
x€Rd

(i.e., single-step economic dispatch)

MPC : © — arg ntin f(%50¢) + [[x = x¢—1 || + Zf(y'?'; ét+T|t) +lyr —yr—1ll = %
x€eR =
yl,...,waRd '

(model predictive control)
But... MPC will be intractable if f( - ; &) is nonconvex!

|dea: train an ML algorithm (offline) to mimic MPC
But: ML algorithm generally won’t come with worst-case guarantees
Wish to exploit its (likely) good performance while providing worst-case guarantees



Robustifying black-box ML algorithms

ldea: switch back and forth between ML and Greedy algorithms

e Follow ML decisions until Cost(ML) surpasses some threshold /

e Increase h and switch to following the Greedy algorithm until
Cost(Greedy) surpasses h

* Increase h, switch back to ML and repeat...

Theorem. For any ¢ > 0, our algorithm achieves
cost bounded by

min{(1 + €)Cost(ML), O(e~!)Cost(Greedy) + O(De™ 1)}




Experiments: Grid Cogeneration

Codispatch of electricity & steam on
two thermal generators under increasing
wind penetration
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Combine with Greedy algorithm via 6@6& RS
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Thanks for listening!

Please feel free to reach out at nchristi@caltech.edu
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