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Abstract

We propose a learning-augmented algorithm, ROBUSTML, for operation of dis-
patchable generation that exploits the good performance of a machine-learned algo-
rithm while providing worst-case guarantees on cost. We evaluate the algorithm on
a realistic two-generator system, where it exhibits robustness to distribution shift
while enabling improved efficiency as renewable penetration increases.

1 Introduction

The need to reduce greenhouse gas emissions to mitigate the impacts of anthropogenic climate change
is driving an energy transition characterized by large amounts of renewable generation resources
being added to the grid. During this transition, the variability of solar and wind energy will require the
operation of dispatchable generation to balance out the fluctuations in renewable energy production
and maintain reliable grid operation. However, conventional fossil fuel generators incur significant
added costs from the frequent cycling and ramping they must perform under high penetration of
renewables, due both to decreased fuel efficiency and increased operations/maintenance required
from operating in this regime [29]. Moreover, most dispatchable resources are limited in their ramp
rate, and thus under high penetration of renewables they must be operated in a manner that anticipates
system ramp needs, taking into account the high costs of frequent ramping while still meeting demand.

Operating generation optimally requires minimizing fuel costs while taking account of intertemporal
coupling of decisions, including both ramp costs and ramp limits. A natural approach for this problem
is model predictive control (MPC), an algorithm that utilizes near-term forecasts of demand and
other conditions to choose decisions that minimize aggregate cost over a fixed lookahead horizon
[20]. In addition to theoretical work confirming its good performance [16], MPC works well in
practice and has been studied in a number of energy and sustainability-related domains, including
control of wind turbines and solar photovoltaics [[17, 28], smart buildings [11} 3], and energy storage
[19] 21]]. Moreover, several regional power system operators in the US use MPC to settle the real-
time electricity market [7]], and it is widely understood that such lookahead algorithms will play an
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increasingly important role in enabling power systems to reliably absorb renewable energy volatility
(9, 131]].

However, MPC suffers computational complexity exponential in the lookahead horizon if the system
model/costs are nonconvex, necessitating the use in practice of heuristic solvers that operate on a
faster timescale but generally produce suboptimal decisions [[10} 6, 2]]. One promising avenue for
overcoming the computational complexity of nonconvex MPC to enable improved performance in
practice is the development of machine learning (ML) models that imitate its behavior, bypassing
the need to solve an independent nonconvex optimization problem to generate each decision. This
approach of “learning to control/optimize” has seen wide recent interest in the ML, control, and
power systems communities [[13} 24} 27} 8l 23| 22]. However, these learning-based approaches come
with no a priori guarantees on their incurred cost under distribution shift or on out-of-sample problem
instances, jeopardizing their performance at deployment time. To counter this potential for poor
performance and enable confident deployment of ML proxies for MPC in real-world settings, this
work proposes an algorithm to robustify the behavior of such an ML proxy. We follow the paradigm
of the emerging learning-augmented algorithms literature (e.g., [[L8| 25, [14]), specifically building
upon the line of work [[1, 26l 5, [15] designing algorithms for online optimization with switching costs
(a generalization of the dispatch problem) that can exploit the performance of an ML algorithm while
providing worst-case guarantees on cost.

Our contributions are twofold: first, we propose a learning-augmented algorithm ROBUSTML for
online optimization with switching costs that achieves the best deterministic performance bound in
the setting of general nonconvex cost functions. Specifically, when provided with an ML algorithm
for the problem as well as a heuristic baseline algorithm, for any desired €, > 0, our algorithm
achieves cost at most (1 + € 4 §) times the cost incurred by the ML algorithm, while maintaining a
worst-case cost bond of O(% + %) where C is the cost of the heuristic baseline and D is the diameter
of the decision space. This is the best known tradeoff for deterministic algorithms, as all prior
deterministic learning-augmented algorithms paid at least 3 times the cost of the ML algorithm [} [1]].
Second, we empirically evaluate the performance of ROBUSTML on a realistic two-generator system
under increasing penetration of renewable energy. We find that using a learning-based approach
can improve computation time over MPC by 5 orders of magnitude, and our algorithm ROBUSTML
ensures robustness to distribution shift while improving cost by ~3% over the heuristic baseline under
no distribution shift, with this difference widening under increasing renewable penetration.

Our work has potential for both direct and downstream impact on the problem of climate change.
Our results indicate that using ROBUSTML for real-world grid operation could yield modest but
tangible efficiency improvements, leading to reduced emissions. Moreover, ROBUSTML’s robustness
guarantees and lookahead use could enable greater penetration of renewables while maintaining
grid reliability. More generally, we see great promise in using learning-augmented algorithms like
ROBUSTML to achieve efficiency improvements without sacrificing robustness in other energy and
sustainability-related domains where MPC is widely used [17, 128} [11} (3,19} 21]].

2 Model and Preliminaries

We consider the problem of dispatching generation to meet both electricity and steam demand in
the presence of variable renewable generation (see Figure [Th for a diagram illustrating the problem).
Specifically, we consider an array of several heterogeneous thermal generators, and at each time
t € {1,...,T}, the system operator must choose how much steam and electricity each generator will
produce, subject to the constraint that aggregate generation must meet demand in every time interval.
Each generator incurs a cost due to fuel consumption, which depends on its production level and
environmental factors (temperature, pressure, humidity, etc.), as well as costs due to ramping.

We formulate this problem as an instance of online optimization with switching costs [4]. In an
abstract setting, online optimization with switching costs can be considered as a game in which at

each time ¢t € {1,...,T}, a decision-maker receives a vector 6; € R™ parametrizing a cost function
f(-;8;) and then must choose some decision x; € R?, paying the hitting cost f(x;; ;) as well as
the switching cost ||x; — x;—1|| incurred by that decision, where || - || is some norm. We assume that

the decision x; does not impact future parameters 0, for 7 > ¢. In the context of our application
to generation dispatch, 8, is a vector containing all ambient factors such as temperature, pressure,
humidity, and power/steam demand at time ¢, x; collects the system operator’s dispatch decisions



at time ¢, and f maps ambient conditions and generator dispatches to a fuel cost while penalizing
violation of any constraints on the decision. The switching term ||x; — x;_1]| acts as the ramp
cost. The problem is online, so when making a decision x; at time ¢, the decision-maker only has
access to the parameters 01, . . ., 04 that have been revealed so far. However, the decision-maker may

have access to (possibly inaccurate) forecasts ét+1|t, e ét+w‘t of parameters within a lookahead
window of length w € N. Such forecasts could be obtained using standard ML methods for predicting
near-term weather or energy demand.

We consider two standard algorithms for the problem of online optimization with switching costs.
The first, GREEDY, is a myopic algorithm that simply chooses the decision x; that minimizes f(-; 0;)
at each time ¢. This algorithm has worst-case cost guarantees under mild assumptions on the structure
of the cost function f [30], and resembles the single-stage dispatch algorithm used widely by power
system operators. Its behavior is characterized formally as follows:

GREEDY : 0; — arg min f(x; 0;) = x;.
x€ER?

That is, GREEDY can be viewed as a function that, when provided with parameter vector 0, € R",
returns the minimizer of f(-; ©;) as a dispatch decision. The second algorithm we consider is model
predictive control (MPC). It solves a lookahead optimization problem using near-term predictions
of parameters to choose a decision. Formally, at time ¢, given a (fixed) prior dispatch x;_;, perfect
knowledge of the parameter vector 8, and forecasts ét+1\ta e ét+w|t of parameters over the next
w timesteps, MPC chooses its decision as follows:

MPC: © — argmin f(x;0¢) + [|x — x¢—1]| + Z f(yrs ét+¢\t) +lyr —yraall =%

xeR? =1
YiseoYwER?
where y( := x and we have stacked the vectors (0, ét+1|t, ce éH_w‘t) into a single entity ® €

(R™)“*1 for brevity. Note that only the minimizer x corresponding to the decision made for time ¢ is
binding, i.e., the chosen decision x; is just the optimal x in the above optimization; all of the other
variables y1, . ..,y are ignored after the solution is obtained.

As discussed in the introduction, MPC can be computationally prohibitive if f(-; ©) is nonconvex.
Thus, in our work, we train a machine learning model to approximate the input-output behavior of
MPC. That is, given some dataset D = {(0;,x;)}Y; of parameter-decision pairs generated by
MPC (i.e., x; = MPC(®;)), we train a neural network ML : (R")**! — R? to minimize the error

ZZN:1 [ML(®;)—x;||3. We seek for ML to approximate MPC well, so that [ ML(©)—MPC(O)]|,
is small in general. However, while we may obtain low empirical error on the training set, this does
not guarantee that ML will be a good proxy for MPC on out-of-sample instances or under distribution
shift. This motivates the development in the next section of an approach to robustify ML.

Finally, we introduce some notation. For an algorithm ALG producing decisions xy, .. ., X, define
ALG; = x; as ALG’s decision at time ¢, and define Ca (s, t) := ZtT:s f(xr507) + [|%xr — xr—1]|
as ALG’s cost from time s through ¢. For brevity, we write the total cost as Ca g = Carg(1,T

3 Algorithm

We propose in Algorithm [I] (Appendix [A]) a novel algorithm, ROBUSTML, that robustifies the
algorithm ML. It behaves as follows: it starts by following ML’s decisions, but if GREEDY is
performing well relative to ML and ML surpasses a cost threshold, then ROBUSTML will switch to
following GREEDY’s decisions (line[8). However, if GREEDY then starts performing worse relative to
ML, RoBUSTML will switch back to following ML (line[I3]). The specific thresholds for switching
are determined by the parameters €, § > 0, and it is assumed that the decision space has diameter
D, so that ||[ML; — GREEDY;|| < D for all ¢. Our main analytic result is the following performance
bound.

Theorem 1. The algorithm ROBUSTML (Algorithm(I) achieves cost

1 2
CropustmL < min {(1 + e+ 6)Cwme, (1 + :;'_6) CGreepy + (1 + 5) D} )
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Figure 1: (a) A simplified depiction of the power plant setup. In our example, there is an air-cooled
unit and a water-cooled unit. At each time ¢, ambient conditions (temperature, demand, etc.) are
aggregated in the vector 0, and dispatches are aggregated in the vector x;. (b) Number of seconds
(mean and std. dev.) for each algorithm to produce a day’s worth of dispatch decisions. (¢) Cost
(mean =+ std. dev.) of each algorithm on the test set under distribution shift, normalized by GREEDY’s
cost. (d) Mean cost of each algorithm (normalized by GREEDY’s cost) on the test set under increasing
wind penetration and two distribution shift scenarios (solid line is o = 0, dotted is o = 1).

We prove the theorem in Appendix [B] In particular, Theorem|[T]tells us that by selecting e, § arbitrarily
small, ROBUSTML can achieve performance arbitrarily close to ML, at the cost of possibly worse
performance relative to GREEDY. However, by selecting moderate ¢, , it is possible to trade off
exploitation of ML with robustness in cost performance relative to GREEDY.

4 Experimental Results and Discussion

We deploy ROBUSTML with parameters ¢ = § = 1 on a small but realistic system with two thermal
generators and varying levels of wind generation. The generator models are proprietary and their costs
are modeled in a black-box fashion via neural networks. Wind generation data was obtained from the
WIND Toolkit [[12]. We use a proprietary dataset of 269 days of ambient conditions (temperature,
pressure, humidity) and municipal demands for energy and steam on a 15 minute basis. After splitting
into training days (200 days) and test days (69 days), we generate a dataset of MPC decisions on the
training days with lookahead w = 12 using differential evolution, and train a 3-layer neural network
as the algorithm ML to imitate the behavior of MPC on this training set.

We begin by examining the performance of ML in comparison to MPC. We find that ML approxi-
mates the decisions of MPC well, achieving cost only 0.55% worse on the test set. Moreover, ML is
five orders of magnitude faster, producing a day’s worth of dispatch decisions in less than a second,
while MPC takes upwards of 8 hours, both on 4 virtual CPU cores (Figure[Ib).

We next examine the performance of ML, GREEDY, and ROBUSTML on the baseline system (no
renewables) when there is distribution shift on the lookahead predictions. That is, we compare
the setting of perfect predictions (ét+1|t =011y, ét+w|t = 0444 ) to settings with increasing
magnitudes of noise o on the predictions. We show the results in Figure[I. In particular, we observe
that while ML performs better than GREEDY when predictions are good (o ~ 0), its performance
degrades as the noise grows (o — 2). Nonetheless, ROBUSTML gracefully transitions between the
good performance of ML for small o to matching the performance of GREEDY in the large o regime.
Thus, even though the quality of predictions is unknown a priori, ROBUSTML preserves robustness.



We further examine the performance of the algorithms under increasing penetration of wind energy
and two distribution shift scenarios (¢ = 0 and 1), displaying the results in Figure[Id. We find that
the efficiency improvement of ML over GREEDY widens as wind penetration increases, highlighting
the value of using lookahead to increase efficiency under high renewable generation. Moreover,
ROBUSTML parallels this improvement while achieving better performance than ML when o = 1.
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A The ROBUSTML algorithm

We specify the algorithm ROBUSTML below in Algorithm[I] Note we assume that all algorithms
begin in the same initial state xg, so ag = ro = Xg (Where a9 = ML and ryo = GREEDY|)).

Algorithm 1: ROBUSTML (€, §)

Input: Algorithms ML, GREEDY; hyperparameters €, d > 0, space diameter D
Qutput: Decisions X1, . .., x7 chosen online

s+ 1

X1 < ap = ML1

fort=2,3,...,T do

Observe f;, a; '= ML, and r; := GREEDY;
if x; 1 =a;_; then // Case where the algorithm coincides with ML; 4
if CML(S,t) > % and CGREEDY(la t) <9d- CML(l,t) then
s+—t+1
Xt < Iy
else
‘ Xt < &g
else // Case where the algorithm coincides with GREEDY;_;
if CGREEDY(L t) <6- CML(]-a t) then
Xy < Iy
else
‘ X¢ < ag
end

B Proof of Theorem

We begin by showing Cropustmr, < (1 + € + §)Cymr. Note that the algorithm consists of phases
in which ROBUSTML first coincides with ML, and then switches to following GREEDY, before
switching back to ML, and so on. We will assume that ROBUSTML ends the instance coinciding
with ML, so x7 = arg; the case in which ROBUSTML ends at r¢ is similar. Let ¢; denote the
timestep in which ROBUSTML switches from GREEDY back to ML for the ith time, with ¢y :== 1
since ROBUSTML always begins by following ML. Similarly, let m; denote the timestep in which
ROBUSTML switches from ML to GREEDY for the ith time. Clearly we have 1 =ty < mj < t; <
co- <my <t < T, for some k£ € N. Even though ROBUSTML ends at ML, define my 1 =7 +1
for notational simplicity. Then the cost of ROBUSTML may be written as



mlfl

CrosustML = Z fr(a;) + ||lar — ar—1]]

T=1
k ti—1
+ Z (fmi(rmi) + ltm, — am, -1l + Z fr(rs) +[lvr — oo
=1 T=m;+1

it1—1
+ fu(@a) +llar, — vl + Y fr(ar)+||af—arl||>

T=t;+1

< CML 1,m; — 1 (CGREEDY mi, t; — 1) + ||rmi—1 - ami—lH

”M”

+ Owme(ti, mig1 — 1) + ||ag, -1 — l"ti71||) (1)
k
< CmL(l,m1 —1)+2kD + Z Careepy (M4, t; — 1) + Cmi(ti, miv1 — 1) (2)
=1
k
< (1 + E)CML + Z CGREEDY(mia t; — 1) &)
i=1
<(1+e+8)Cm @)

where (T)) follows from the triangle equality on ||r,,, — a,,,—1|| and ||a;, — ry,_1]|, and @) follows
by the diameter bound. The inequality (3) follows by line |§| of the algorithm, which states that the
algorithm will switch from following ML to following GREEDY at time ¢ only if Cy(s,t) > 2D
Noting that at the start of any timestep ¢, s is exactly
s= max m;+1
m;+1<¢t
(with mg := 0 for notational convenience), it follows that for each ¢ € [k], Cyp(m;—1 +1,m;) > %.

Thus
k

2kD < GZCML(mi,1 + 1, ml) =€- CML(l,mk) <e-CmL.
i=1
Finally, (@) follows from

ZCGREEDY(miat’L - 1) S CGREEDY(latk - 1) < J- CML(latk - 1) S - CML’
since by definition, X¢, _1 = r¢, —1, which by lineof the algorithm means that Cgreepy (1, tx—1) <

d - CmL(1,tr — 1). Thus we have proved the desired bound Crogusrmr < (1 4 € + §)Cpmr.

We now turn to showing Crogustmr < (1 + 2¢) Careeny + (1 4+ 2) D. First suppose ROBUSTML
finishes the instance coinciding with ML, so x7 = ar. Let 7 € {0,...,T — 1} denote the last time
at which ROBUSTML coincided with GREEDY, or that x, = r,. Thus the cost can be bounded as

CROBUSTML = CROBUSTML(L T+ 1) + CROBUSTML(T +2, T)

<(1+e+0)CuyL(l, 7+ 1)+ CuL(T +2,T) 5
1 2D 1
< max { <1 + ;L 6) CGREEDY(l T+ 1) + T <1 + :;6) CGREEDY} ©6)
1+ 2D
S (1 + 5 6) CGREEDY + — (7)

where (3] follows via the previously proved inequality CropustmL < (14 €+ 8)Cwmr, and (6)) follows
by the fact (according to line[T4]of the algorithm) that ROBUSTML switching from GREEDY to ML
at time 7 4+ 1 means that Cggeepy > 0 - CmL(1, 7 + 1), as well as from the following observation:



since ROBUSTML coincides with ML between times 7 + 1 and 7, 1ine|§| of the algorithm tells us
that either Cyp (7 + 2,T) < % or Cgreepy > 0 - CMmL-

Finally, suppose ROBUSTML finishes the instance coinciding with GREEDY, so x7 = rr. Let
o €{0,...,T — 1} denote the last time at which ROBUSTML coincided with ML, or that x, = a,-.
By the previous case’s inequality (7)), we have

CROBUSTML = CROBUSTML(L U) + CROBUSTML(U +1, T)

14+e€ 2D
< (1 + 5 ) CGREEDY(17U) + ? + fo+1(ro+1) + ||I'o+1 - ao’” + CGREEDY(O' + 25T)

1+e€ 2D
< (1 + ) CGREEDY(17U) + e +D+ CGREEDY(O' + l,T)

14+ 2
< (1 + 6) Coreepy + (1 + 6) D.
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