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Time

PV
Energy

PROBLEM
The high volatility of low-output 
intermittent generators (PV panels) 
decreases the energy grid resilience 
(Smith et al., 2022)

Photovoltaic Energy

SOLUTION
Accurate probabilistic forecasts based 
on satellite maps to capture clouds 
motion dynamics

WHY
To obtain a 20% reduction of 
greenhouse gases, we need to generate 
~50% of the energy from renewable 
sources (IPCC)
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MeteoSat Maps The satellite maps are retrieved by a 
MeteoSat geostationary satellite. It scans 
the same part of the Earth surface every 15 
minutes with a spatial resolution of 
0.02˚x0.02˚.



The HelioMont algorithm (Castelli et al., 
2014) transforms the raw satellite images 
into surface solar radiation (SSR) maps.

The solar radiation can be described using 
two components:

𝑆𝑆𝑅 = 𝐾𝐼×𝑆𝑆𝑅!"

Where:
• 𝑆𝑆𝑅!": clear-sky SSR, theoretical value 

determining the SSR in case of 
completely clear sky conditions.

• 𝐾𝐼: clear-sky index, cloudiness 
coefficient measuring the effect of 
clouds on the actual 𝑆𝑆𝑅.
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MeteoSat Maps

SSR map of Switzerland



• Given a sequence of 𝑚 𝐾𝐼 maps 𝐾𝐼! !!"#
!! , we want to forecast the probability 

densities distributions of the successive 𝑛 steps of PV production 
𝑝 &𝑃𝑉 ! !!$%

!!$&
.Where 𝑝 &𝑃𝑉 ! is described by a forecast ensemble 

&𝑃𝑉!
%, … , &𝑃𝑉!

'"#$ .

• We apply a 2-step approach:
1. Forecast an ensemble of future satellite images
2. Estimate the regional PV power from the forecasted ensembles

Problem Setup
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Forecasting Setup

Probabilistic 
optical-flow 

model

(𝑡! −𝑚,… , 𝑡!)

(𝑡! + 1,… , 𝑡! + 𝑛)

𝑘"#$ forecasts

0

1

KI maps

6



Forecasting Setup
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Forecasting Setup 
Probabilistic Optical-Flow Model - Extrapolation

KI map
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*Carriere et al., 2021
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Forecasting Setup 
Probabilistic Optical-Flow Model – Steps* without decomposition

KI map
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Forecasting Setup 
Probabilistic Optical-Flow Model – Steps*
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Benchmark Models

Moreover, we also compared the advection models to two benchmark models not 
based on KI forecasting: 

1. Persistence Ensemble (PeEn, Alessandrini et al., 2019)
(𝑃𝑉#,% = 𝑃𝑉#&%×()* ∀𝑗 ∈ 1,… , 𝑘+," ∀𝑡 ∈ (𝑡- + 1,… , 𝑡- + 𝑛)

2. Persistence (Pe)
(𝑃𝑉# = 𝑃𝑉#! ∀𝑡 ∈ (𝑡- + 1,… , 𝑡- + 𝑛)
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Case Study

We tested the different models to forecast the cantonal aggregated PV power in 
Switzerland with a time resolution of 15 min and a lead time of 4 hours.

• The input is composed by one hour of data m = 4
• The output is 4 hours of PV production n = 16
• 7 Swiss cantons are considered in this study: ZH, BE, TG, AG, BL, ZG, VD
• For the prob. optical-flow models 𝑘"#$ is set to 25, while for PeEn 𝑘"#$ is set to 12 
• The data is limited to Solar Zenith Angle < 88 degrees
• The test set is composed by 60 days of 2018 and the remaining days of 2018 are used for train and 

validation
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Start date End date

2018-01-05 2018-01-10

2018-02-05 2018-02-10

2018-11-05 2018-11-10

2018-12-05 2018-12-10



Results – PV Regression

• The regression performance on the different cantons is measured looking at the normalized RMSE 
and normalized MAE. 

• The normalization factor is the maximum power generated in the respective canton in 2018.
• The model performs better for bigger regions. In fact, there is a strong negative linear correlation 

between nRMSE and the number of pixels representing the regions.
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Canton nMAE nRMSE N Pixels
ZH 2.94% 4.23% 478
BE 2.41% 3.35% 1616
TG 3.04% 4.42% 270
ZG 3.82% 5.77% 65
VD 2.39% 3.4% 840
AG 2.94% 4.2% 386
BL 3.43% 5.18% 144



Results – KI Forecast

The average CRPS on the test set is computed for every pixels belonging to the mentioned cantons:
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CRPS

• The autoregressive model clearly improves thequality of the forecasted ensemble of KI maps. With 
respect to the probabilistic extrapolation method, it reduces the average CRPS by 25.5%.

• The cascade decomposition has a small impact on the prediction.
• The models struggle to precisely forecast on the Alps region.



Results – KI Forecast

We measured the average Critical Success Index (CSI) for 3 thresholds (0.1, 0.4, 0.8) covering the 
distribution of KI values.
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Results – KI Forecast
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Results – KI Forecast
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Results – PV Forecast 
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• The advection-based models (Extrapolation, No Dec. Steps and Steps) 
outperform the persistence-based models (Pe, PeEn).

• Modeling the growth and decay of cloudiness significantly improved the quality 
of the ensemble forecast

• On the other hand, analyzing the ensemble mean, the performance of the 
advection models is similar. Having a closer look, we can notice that Steps is the 
best performing model for all the different cantons. This is probably due to the 
cascade decomposition, which reduces the ensemble bias.



Results – PV Forecast 
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Results – PV Forecast 
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Results – PV Forecast 
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• Steps is the best performing model in all the considered regions. 

• The decomposition makes Steps reducing the nRMSE up to 10% compared to the same model without 
decomposition

Canton
PeEn Extrapolation No Dec. 

Steps Steps

ZH 9.38% 6.05% 4.54% 4.50%

BE 9.28% 5.36% 3.87% 3.79%

TG 8.79% 5.80% 4.35% 4.23%

ZG 10.19% 7.12% 5.33% 5.20%

VD 8.34% 5.12% 4.20% 3.95%

AG 9.53% 6.23% 4.59% 4.53%

BL 10.13% 6.71% 5.16% 5.06%

Canton
Pe PeEn Extrapolation No Dec. 

Steps Steps

ZH 20.74% 15.53% 8.26% 8.20% 7.70%

BE 19.41% 15.19% 7.30% 6.69% 6.41%

TG 20.86% 14.92% 8.00% 7.90% 7.29%

ZG 21.14% 17.21% 10.07% 9.61% 9.16%

VD 20.12% 13.25% 6.83% 7.31% 6.55%

AG 20.27% 15.36% 8.35% 8.04% 7.56%

BL 20.76% 17.42% 9.30% 9.24% 8.67%

Normalized CRPS Normalized RMSE
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