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Why is solar power nowcasting important?

- Prediction in the very near future. Typically 2~6 hours ahead.
Adoption of renewable energy sources have increased (which is good!)
However,
Solar power is intermittent

Back-up “spinning” reserves emit large amounts of CO2 [1]

Crucial to increase accuracy of predictions with uncertainties
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UK Photovoltaics (PV) dataset
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*https://hugqgingface.co/datasets/openclimatefix/uk pv

 Access to solar PV
readings for 1311
stations across the UK*

e Select data to be
between 08:00-16:00
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https://huggingface.co/datasets/openclimatefix/uk_pv

UK Photovoltaics (PV) dataset

 Remove outliers and
scale by total capacity
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Gaussian Processes

« GPs provide flexible priors
,. ,; for modelling data

» « Can get predictions +
0. i 5 uncertainty estimates
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Gaussian Processes

« GPs provide flexible priors
for modelling data

« Can get predictions +
uncertainty estimates

« However, inference cost is
cubic in data size

» Use state-space method to
reduce inference cost [2]
<LK



State-space reformulation (Hartikainen et. al. [2])
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Gaussian Process regression

Linear state-space model

« Use Kalman filtering to condition on data as they arrive
 Linear cost in data size
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Model

* We used a quasi-periodic Matern-3/2 GP to model the latent states. The kernel is:

k(1,1) = kmatern3n(t 1) + Kiaern3o(8 1) Kperiodic (7 )-

 Use Beta likelihood

N
pO 1) =B Gilalh). ).
i=1

to model data in [0, 1].



Results

1.0 T 1.0 '
X Train Data X Train Data . .
0.8 O Test Data 0.8 O Test Data ° Suranlneg gOOd
- Predictions - Predictions . .
So6 === Train-Test Split B0s6 T === TrainTest Spiit predlctlons on a
3 " 3 “ I ” d
< o4 ! "y caim qay
> Xi >
0.2 x wl 3§§<’>< ok 0.2
» \\0, N/ ‘(' 753 N
0.0 e % ;%MMJQ&@%M o 0.0’ 3 P Ronka )
S0 50 100 150 200 250 300 ) 50 100 150 200 250 300 i Note: we ve Only used
Time-Step Time-Step th t PV d
Lo ' Lo . € pas readings
X Train Data X Train Data
0.8 O Test Data 0.8 O  Test Data aS reg ressors
- Predictions o Predictions
§_0 6 === Train-Test Split §-O 6 === Train-Test Split
. 1 * 1
S % ¢ x| S |
%J 0.4 1; ><5\ E IZIEJ 0.4 . i
3K K o)
0.2 % & y : 0.2 XS@ o X X | o
X f I % R @@\y\g 5 er :
0076 50 100 150 200 250 0076 50 100 150 200 250 300
Time-Step Time-Step

PV predictions on date 2018-01-29 at four random locations < > < <,



Results
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PV predictions on date 2018-02-01 at four random locations

« However, predictions
are under-confident

when timeseries is
highly volatile

 We also considered
spatio-temporal GPs
to take into account
spatial correlations,
but achieved worse
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Results

Model MAE | (mean =+ std) NLPD | (median & m.a.d.)
Persistence 0.119 4 0.060 N/A
Yesterday 0.152 4 0.091 N/A
Hourly smoothing 0.125 4+ 0.061 N/A
Simple exponential smoothing 0.117 & 0.058 — 111 ]

Seasonal exponential smoothing 0.110 & 0.049 —12.2+10.4
Vector autoregression 0.129 4 0.071 N/A

Our model 0.109 £+ 0.050 —12.9+13.8

* Results are marginally better than several baseline models we tested on
« Metrics used: mean absolute error (MAE), negative log-predictive density (NLPD)
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Summary

« Being able to predict solar power production a few hours in advance is
incredibly useful for power grid planning, which may help to reduce CO2
emission and costs associated with the use of solar power

* We focussed on the use of Gaussian processes for prediction and
quantifying uncertainties

» Using only the PV time series as inputs, we can get good predictions on
“‘calm” days

* However, predictions are under-confident on “noisy” days
At the current stage though, hard to justify its use over simpler baselines
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Discussion

* Cloud cover, as well as other 27 une 2019
weather variables, play an important
role in solar power output

= Currently exploring how to
incorporate this information

« We may also try to “learn” underlying
latent dynamics using e.g. Latent
Force Models [3] or Neural SDEs [4]

Link: https://www.youtube.com/watch?v=10p-tj-lJpk
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