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Abstract

This proposal aims to develop more accurate federated learning (FL) methods with
faster convergence properties and lower communication requirements, specifically
for forecasting distributed energy resources (DER) such as renewables, energy
storage, and loads in modern, low-carbon power grids. This will be achieved
by (i) leveraging recently developed extensions of FL such as hierarchical and
iterative clustering to improve performance with non-IID data, (ii) experimenting
with different types of FL global models well-suited to time-series data, and
(iii) incorporating domain-specific knowledge from power systems to build more
general FL frameworks and architectures that can be applied to diverse types of
DERs beyond just load forecasting, and with heterogeneous clients.

1 Introduction and motivation

This project aims to improve the accuracy of edge computing methods like Federated Learning (FL)
for applications in power systems operation and optimization. Specifically, we tackle the challenge of
accurate forecasting to appropriately coordinate Distributed Energy Resources (DER) in medium
to low-voltage distribution grids. Our initial focus will be on accurately predicting both short and
long-term forecasts of electricity consumption from loads as well as generation from renewables. In
addition to forecasting these aggregated quantities at the secondary and primary feeder levels, we will
also study individual forecasts at the level of each home or building. Such DER forecasts are crucial
for grid operators, utilities, and other entities to operate and optimize power grids. Better forecasts
can also help achieve more efficient scheduling and dispatch in order to lower operating costs and
electricity tariffs, reduce network power losses, and increase grid reliability and resilience. The need
for accurate forecasting is becoming even more acute with the increasing penetration of DERs which
introduce more uncertainty, intermittency, and variability. FL is also well-suited to this task since it
preserves the data privacy and security of individual consumers and DER owners (prosumers) unlike
conventional centralized machine learning approaches.

DER forecasts span a multitude of different kinds of devices. This includes consumption from both
fixed or inflexible and flexible loads like electric vehicle chargers, battery storage, and Heating,
Ventilation, and Air Conditioning (HVAC) systems. In addition, grid operators also need to predict
outputs from renewables such as rooftop solar Photovoltaic (PV) panels. Prior works have looked at
applying FL for load and DER forecasting [1], but there are still several limitations and challenges
remaining that need to be addressed. These include (i) poorer performance of FL in terms of prediction
accuracy when compared to traditional centralized learning methods, especially when applied to data
that is not independently and identically distributed (IID) across different FL clients, and (ii) long
training times for the aggregated global model to converge due to diverse weights and parameters
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across clients [2]. In our forecasting applications, these clients would correspond to different groups
of independently-owned DERs distributed across the grid.

2 Machine learning methods

This work aims to address these challenges by applying variants and extensions of FL such as
clustered FL and model personalization or fine-tuning in order to improve forecasting accuracy and
achieve faster convergence while still preserving privacy and reducing communication requirements
relative to centralized machine learning (ML) techniques. In particular, methods like hierarchical
clustering (HC) [3] and Iterative Federated Clustering Algorithm (IFCA) [4] recently proposed in the
literature have been shown to improve validation and test set prediction accuracy while also achieving
faster convergence times by reducing the communication costs and iterations needed to produce a
good global inference model. Some of the above client clustering techniques have been applied to
niche load forecasting applications such as short-term residential demand forecasting for individual
houses and aggregate loads [5, 6, 7]. However, to our knowledge, such methods have not yet been
extended to more general DER forecasting applications as well as longer-term predictions, both of
which may introduce much more data heterogeneity across different clients and nodes as well as
potential spatio-temporal distribution shifts over time.

In addition to the above extensions, other variants of FL have been proposed that aim to improve
the model accuracy through local model personalization and fine-tuning [6], meta-learning [8] and
dynamic regularization to better align the optimality of local device-level solutions and the global
model [9]. Other studies have developed frameworks aimed at training heterogeneous local models
that can still be stably aggregated to produce sufficiently accurate global models [10]. However,
such methods have not yet been tested or validated for power grid applications like load or DER
forecasting.

In addition to experimenting with improved versions of FL, we also plan to incorporate the use
of deep neural network models well-suited to time series data such as long short-term memory
networks (LSTM), recurrent and convolutions neural nets for the global and local models, and
rigorously evaluate their performance in the FL setting in terms of accuracy as well as communication
requirements and sample efficiency. In terms of training the FL client models, we also plan to utilize
momentum-based and other accelerated stochastic gradient descent methods for faster convergence
[11].

Our goal is to combine the above tools to build a general framework that can be used to accurately
forecast different types of DERs (not only loads) with (i) lower prediction errors for individual
forecasts relative to local learning and (ii) lower errors for aggregated forecasts relative to centralized
ML, while still retaining data privacy, sample efficiency, and computational speed. In addition to
predicting the baseline power injections (generation or load) from these DERs, we also aim to forecast
their associated upward or downward flexibilities that they can offer to grid operators. Accurately
capturing this DER flexibility information is becoming increasingly critical to efficiently and reliably
run transmission and distribution grids under the new paradigm of distributed generation/storage,
flexible demand response capabilities, and more frequent extreme weather events. In order to build
such generalizable and high-fidelity models, we will need to combine the latest advancements in ML
with domain-specific knowledge such as load models [12], socioeconomic and behavioral factors
for DER owners, weather-based renewables output forecasting (e.g. solar irradiance for PV output),
and physics-based grid constraints for storage, generator ramp rates, etc. Another example is the
distinct types of load flexibilities between shiftable versus curtailable versus non-interruptible loads.
Incorporating such factors would help us build physics-informed models that are more well-suited to
power system applications.

Finally, a more open-ended aspect of the project will examine and survey approaches to further
enhance the security and privacy of FL methods, especially in the context of cyber-physical threats in
power grids and the risk of exposing the data characteristics of individual clients and DERs. Here, we
hope to explore the use of methods like differential privacy using noisy signals and secure multi-party
computation, particularly for DER forecasting at an aggregate level. In doing so, we can also evaluate
and consider the tradeoffs between privacy protection and prediction accuracy, and/or the duality
between model performance (in terms of accuracy and computational speed) versus robustness.
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3 Climate change and real-world impacts

Improved time series forecasting for loads and other distributed energy resources would help us
coordinate these resources more effectively in real-time to operate power grids more efficiently and
optimally. More accurate forecasts could also help grid operators plan better to maintain system
stability, and improve system reliability and resilience, while also reducing network losses, lowering
operational costs, and achieving other key objectives like voltage regulation and frequency control.
The improved observability and controllability of distribution grids resulting from better DER
forecasts would also facilitate easier coordination with the main transmission grids and wholesale
markets - since grid operators currently don’t have much visibility over the distribution system
downstream.

Such methods would help accelerate the deployment and more seamless integration of DERs into
distribution grids in order to increase the penetration of renewables as well as other supporting
technologies like demand response, batteries, and electric vehicles. All of this will help with the
rapid decarbonization of the electric power sector as well as other related sectors like transportation,
heat, and heavy industry that will eventually be electrified as well in the near future. In addition to
helping drive down emissions, this would also help improve affordability by lowering energy costs
for customers, and promote climate justice by increasing access to clean energy.

We aim to demonstrate these impacts by exhaustively validating our proposed FL frameworks on
large-scale, realistic data sets to demonstrate the effectiveness of FL over traditional time-series
forecasting methods. We aim to start with standard IEEE power grid test cases [13] and then extend
to more realistic scenarios using real smart-meter utility data [14] and other sources for DER data
like Pecan Street 1. In addition, we also hope to extend our testing beyond the US to look at other
regions with high DER penetration like the EU. The flowchart in fig. 1 shows the mains tasks that
will be undertaken to complete this proposal.
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Figure 1: Summary of key tasks and activites proposed for this research project.

1https://www.pecanstreet.org/
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