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Abstract

There are many benefits from the accurate forecasting of Arctic sea ice, however
existing models struggle to reliably predict sea ice concentration at long lead
times. Many numerical models exist but can be sensitive to initial conditions, and
while recent deep learning-based methods improve overall robustness, they either
do not utilize temporal trends or rely on architectures that are not performant at
learning long-term sequential dependencies. We propose a method of forecasting
sea ice concentration using neural circuit policies, a form of continuous time
recurrent neural architecture, which improve the learning of long-term sequential
dependencies compared to existing techniques and offer the added benefits of
adaptability to irregular sequence intervals and high interpretability.

1 Introduction

Polar ice caps play an important role in maintaining a balanced global climate. Perhaps most
importantly, the sea ice serves as insulation to regulate temperature, moisture, and solar radiation on
the Earth’s surface and in the atmosphere, [20,|33]. Sea ice cover in the Arctic has declined rapidly
as a result of anthropogenic warming over the preceding century [26] 28|, which has been noted as a
leading cause of near-surface temperature amplification in the Arctic [[19} 13} 27, [15[25] and changes
in mid-latitude meteorology well beyond the boundaries of the Arctic circle [7, 31]. The melting
trend is predicted to continue, with the current decadal rate of decline at 13.16% in September and
2.67% in March [30]. Effectively forecasting Arctic ice cover will prove crucial for communities
residing within the region who are most susceptible to food insecurity induced by algal blooms in the
absence of ice that are toxic to their food supply [1]]. Further, accurate Arctic sea ice prediction may
correlate to improved navigation within the region and weather estimates elsewhere in the world [|14]],
although the latter is still in dispute [3]].

The most common methods for predicting Arctic sea ice concentration (SIC) are dynamical models
which tend to couple ice, ocean, and atmospheric data into a deterministic prediction, however, they
are highly susceptible to noise in the initial conditions [22] and rarely outperform statistical models
at lead times beyond two months [[1]. Deep generative models, a form of statistical model, have also
had success in the tangential task of precipitation nowcasting due to their probabilistic nature and
consequent ability to mimic ensemble methods [23]]. The recent wide availability of remote sensing
data has allowed the development of more robust, deep learning-based models to predict SIC as well
as other sea ice characteristics. The seminal learned models for this task examine spatial relationships
in ice concentration using an ensemble of convolutional networks that improve predictions of sea
ice extent (SIE), derived from SIC, at lead times up to six months compared to baseline persistence
and climatological models [1f]. Naturally, subsequent works utilize the time domain and tackle
the forecasting task using spatiotemporal sequence models in the form of convolutional long-short
term memory networks (ConvLSTMs) [30, 2} [18]]. Such ConvLSTM models for SIC are typically
evaluated at subseasonal lead times and outperform baseline statistical and dynamical methods under
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Figure 1: Sequential forecasting pipeline. Given a sequence of input SIC observations for a region,

the model first uses a series of convolutional layers to embed spatial features before being passed

through the recurrent NCP model. The output is a series of predictions at future time steps.

two months, but degrade beyond that. This limited performance beyond a few months can be attributed
to both the chaotic systems that drive Arctic SIC and the vanishing or exploding gradients that occur
while training recurrent neural networks (RNNs) which limit the predictability of longer sequences.
In this work, we propose a highly expressive spatiotemporal recurrent network architecture fit to the
task of forecasting Arctic SIC. The resultant model structure improves interpretability insights into
which regions of the Arctic are most influential in overall SIC, and can also be supplied with mixed
memory architectures to mitigate the gradient issues of existing recurrent methods [[16].

2 Learning to predict sea ice concentration

2.1 Neural architecture

Neural circuit policies (NCPs) have excelled as end-to-end (perception-to-actuation) controllers in
the field of autonomous robotics [17]]. They are a sparse but intentional wiring of liquid-time constant
(LTC) recurrent network cells [[11}|10], a form of continuous time recurrent model [21} [24]], made up
of four distinct layers of neurons whose names allude to their robotic origin: sensory, inter-neuron,
command, and motor. When predicting Arctic SIC, sensory neurons extract contextual (spatial)
relationships in the input features, inter and command neurons make a decision, and motor neurons
execute the goal task of representing the ice concentration level. The relationships within this neuron
structure are characterized by a semi-implicit ordinary differential equation (ODE) solver which
yields a stable solution of the system, the result of which is folded into an RNN and trained via
supervised learning [[17]].

LTC networks exhibit superior performance in modeling sequential and irregularly sampled data
by combining a static network’s depth dimension with an RNN’s time dimension into a continuous
vector field, allowing for parameter sharing and function approximation that is not possible with
discrete neural networks [12]. Additionally, the inner neural ODEs have been shown to be highly
expressible [6]], which translates to the parent LTCs and NCPs and in turn enhances interpretability
methods applied to these models.

The proposed architecture consists of a convolutional head, NCP backbone, and deconvolutional
upsampling to produce output sea ice concentration maps as shown in Figure|l} Given a sequence
of regularly or irregularly sampled observations composing the lookback window, the model makes
predictions of future Arctic SIC. We henceforth refer to this model as ConvNCP.

2.2 Data sources

Since 1978, sea ice concentration readings have been collected over the poles by the Nimbus-7
Scanning Multichannel Microwave Radiometer (SMMR), the Defense Meteorological Satellite
Program (DMSP) -F8, -F11 and -F13 Special Sensor Microwave/Imagers (SSM/Is), and the DMSP-
F17 Special Sensor Microwave Imager/Sounder (SSMIS) [5]. These data are collected and presented
by the National Snow and Ice Data Center (NSIDC) in polar stereographic grids with resolution
25km x 25km at a daily frequency{ﬂ The NSIDC SIC dataset is the primary data source for training
and evaluation of forecasting skill. Following [30], we discard data points prior to 1979 due to high
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Figure 2: Artistic rendering of saliency map output from the learned NCP model over the Arctic.
Heatmap areas represent the relative attention of the network used to identify which regions of the
Arctic give the most insight into future SIC, green represents land mass, and white represents sea ice.

uncertainties and focus on the Arctic region within the area 31-90°N, 180°W-180°E. At the time of
writing, the most recent data readings extend through May 31%, 2022.

Some prior works [/1] also utilize the Coupled Model Intercomparison Project phase 6 (CMIP6) 8] to
generate supplemental simulated data for the training of learned models. While this can significantly
increase data volumes, it introduces the biases of the simulation during training that then need to be
mitigated. We use NSIDC observations as our primary data source and reserve CMIP6 simulations as
an additional option as needed. Non-sea ice data, such as ground permafrost levels [4]], could also
bolster model training.

3 Conclusion

Forecasting Arctic sea ice concentration has been a notoriously difficult task due to the inherently
low predictibility of SIC [9] and fragile initial condition requirements. With the proposed ConvNCP
architecture we aim to improve the following compared to existing statistical, dynamical, and learned
models: (1) improved performance at long lead times, (2) increased robustness to noisy observations,
and (3) novel interpretability capabilities for identifying the key drivers of fluctuations in Arctic
SIC, as demostrated in Figure 2] For greater usability, a natural follow-up is to quantify uncertainty
in ConvNCP predictions. Future extensions of this work include (1) investigating transformer
architectures [29] which also solve the gradient issues of RNNs but may not be well suited for time
series tasks due to permutation invariance [34}32]], and (2) the extension of the ConvNCP model to
related forecasting tasks such as sea ice extent, sea ice thickness, and precipitation.

3.1 Pathway to climate impact

The developments of this work are most impactful to climate scientists as, to the best of our knowl-
edge, no prior spatiotemporal climate forecasting methods offer the advanced explainability of our
ConvNCP. Downstream methods can be developed to best utilize these outputs and better model
climate elsewhere, e.g., mid-parallel meteorology. In combination with the SIC forecasts, this is a dual
benefit to parties who wish to use the outputs of ConvNCP to enact change; since it is claimed that
sea ice determines both weather and sea levels elsewhere in the world, improved ice predictions can
be utilized by governments, NGOs, and nonprofits to legislate environmental policy while saliency
maps can be used in part to identify scientific areas of interest. Lastly, with the growing abundance of
environmental data available, machine learning will find its way into evermore applications in climate
science. There has been a rapid rise in interdisciplinary research at the intersection of machine
learning and climate, and future initiatives such as the EU’s Copernicus initiativeE] will provide
vast datasets to support these collaborations. ConvNCP for Arctic sea ice prediction can serve as a
stepping stone to modern, useful learning-based methods for understanding remote sensing data.

“https://www.copernicus.eu/en
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