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Introduction: Decadal climate predictions

Sea Surface Temperature Correlation Skill Forecast Year 2

Forecasts from 1 to 10 years T

Provide key information to
inform adaptation strategies

Retrospective forecasts
initialized every year (1961-2021)
used to assess prediction skill
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CanESM5 model forecast [Sospedra-Alfonso et al. 2021]



Global Mean Surface Temp [C]

Decadal climate predictions are biased

CanESMS5 raw forecasts, near-surface air temperature
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Decadal climate predictions are biased

Time dependent bias (Drift)
Forecasts drift away from observations with increasing lead time

Systematic bias
Climate models have systematic model error (climatological bias)

Trend bias
Modelled and observed trends generally differ

Forecast adjustment: usually done with simple linear methods [Meehl et al. 2022]



Difficulties of climate models

Climate model biases have non-linear spatial and temporal correlations

spatial correlations
- Teleconnections (ENSO, PDO)
- Relatively strong covariance in neighboring points and long range
covariance for teleconnected regions

temporal correlations
- Lead time dependence (drift)
- Dependence on initialization year (bias, trend)

non-stationary target
- Climate change leads to accelerated data shift = out-of-distribution data
- Trend difficult to approximate



Other solution?

Current adjustment methods don’t capture the special
characteristics of decadal forecasts

Climatological bias correction [Boer et al., 2016]

Linear trend correction [Kharin et al., 2012]

Linear drift dependence on initial conditions [Fuckar et al., 2014 ]
Polynomial representation of drift [Pasternack et al, 2018]

Dynamic modeling of the drift [Nadiga et al., 2019]



Debiasing using Neural Networks

Idea: Use neural networks to learn and correct model biases

Already applied to sub-seasonal forecasts
[Kim et al. 2021, Han et al. 2021, Lerch & Polsterer 2022, Francois et al. 2021, Wang et al. 2022]

So far no application for decadal forecasts

Challenge of climate data:
- non-stationary, correlations in space and time, multiple time scales

Challenge of decadal forecasts:
- longer lead times, larger impact of bias on forecast
- two temporal dimensions for bias: lead time and initialization year



Forecast adjustment using Neural Networks

First tests: simple fully-connected autoencoder
Focus on lead times up to 24 months

Variable: Near-surface air temperature



Forecast adjustment using an Autoencoder
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Preliminary Results: Near-Surface Air Temperature

NN adjusted forecast error Linear bias adjusted forecast error Raw forecast error
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Preliminary Results: Near-Surface Air Temperature
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Preliminary Results: Near-Surface Air Temperature

NN adjusted forecast error Linear bias adjusted forecast error Raw forecast error
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Preliminary Results: Surface Temperature Subregion

CanESM5 SST Correlation Skill Forecast Year 2

Western Subpolar North Atlantic

Area of large errors partly due to
erroneous trends in the reanalysis used
for initialization, and to strong model
climatological bias

[Sospedra-Alfonso et al. 2021]
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Preliminary Results: Near-Surface Air Temperature

NN adjusted forecast error Linear bias adjusted forecast error Raw forecast error
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Conclusions and next steps

Early model still lead-time and initialization year independent
Current focus: learning temporal structure of bias

Challenge: consideration of bias along two temporal dimensions
(lead time, initialization year)

Improvements to architecture: ConvLSTM ([Shi et al. 2015]
Spatially-aware loss functions

Capture model and forecast uncertainties



Model Comparisons ana
Preliminary Results



Model comparison and preliminary results

Model 1: Fully-connected Autoencoder

Model 2: Convolutional Autoencoder with skip-connections (U-Net like architecture)
Already applied for sub-seasonal forecast adjustment, fe. [Han et al. 2021]

Training performed on all lead times (focus on lead times 1 - 24)

First results: - NN-based adjustment improves upon traditional debiasing methods
for some lead times
- training single model on all lead times shows better performance
than using a separate model for every lead time
- Conv. Autoencoder with skip-connections does not outperform
fully-connected Autoencoder



Pattern RMSE distribution over test years (global)
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Model RMSE, Test Year 2016

Autoencoder

RMSE = 0.964

U-Net

RMSE = 0.998

Model Avg.

RMSE = 0.995

NN Adjusted, Lead Month 20, Test Year 2016 Debiased, Lead Month 20, Test Year 2016, RMSE 1.079 Raw, Lead Month 20, Test Year 2016, RMSE 2.393




Model RMSE, Test Year 2020

Autoencoder

RMSE =1.075

U-Net

RMSE = 1.081

Model Avg.

RMSE = 1.053

NN Adjusted, Lead Month 20, Test Year 2020 Debiased, Lead Month 20, Test Year 2020, RMSE 1.281 Raw, Lead Month 20, Test Year 2020, RMSE 2.446
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