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Introduction: Decadal climate predictions

Forecasts from 1 to 10 years

Provide key information to 
inform adaptation strategies

Retrospective forecasts 
initialized every year (1961-2021) 
used to assess prediction skill
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CanESM5 model forecast [Sospedra-Alfonso et al. 2021]

Sea Surface Temperature Correlation Skill Forecast Year 2



Decadal climate predictions are biased

CanESM5 raw forecasts, near-surface air temperature
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Time dependent bias (Drift)
    Forecasts drift away from observations with increasing lead time

Systematic bias
    Climate models have systematic model error (climatological bias)

Trend bias
    Modelled and observed trends generally differ

Forecast adjustment: usually done with simple linear methods [Meehl et al. 2022]

Decadal climate predictions are biased 3



Difficulties of climate models 4

Climate model biases have non-linear spatial and temporal correlations

spatial correlations
    - Teleconnections (ENSO, PDO)
    - Relatively strong covariance in neighboring points and long range  
       covariance for teleconnected regions

temporal correlations
    - Lead time dependence (drift)
    - Dependence on initialization year (bias, trend)

non-stationary target
    - Climate change leads to accelerated data shift  out-of-distribution data→
    - Trend difficult to approximate



Current adjustment methods don’t capture the special 
characteristics of decadal forecasts

   Climatological bias correction [Boer et al., 2016]

   Linear trend correction [Kharin et al., 2012]

   Linear drift dependence on initial conditions [Fuckar et al., 2014 ]

   Polynomial representation of drift [Pasternack et al, 2018]

   Dynamic modeling of the drift [Nadiga et al., 2019]

   

  

   

Other solution? 5



Idea: Use neural networks to learn and correct model biases

Already applied to sub-seasonal forecasts 
[Kim et al. 2021, Han et al. 2021, Lerch & Polsterer 2022, François et al. 2021, Wang et al. 2022] 

So far no application for decadal forecasts

Challenge of climate data:
       - non-stationary, correlations in space and time, multiple time scales

Challenge of decadal forecasts: 
      - longer lead times, larger impact of bias on forecast
      - two temporal dimensions for bias: lead time and initialization year

Debiasing using Neural Networks 6



First tests: simple fully-connected autoencoder

Focus on lead times up to 24 months

Variable: Near-surface air temperature

Forecast adjustment using Neural Networks 7



Forecast adjustment using an Autoencoder 8

           CanESM5 model forecast ensemble 

40 members
Lead time 120 months
Surface Temperature
Years 1961 – 2020
Training: all years before
                 test year

Adjusted 
forecast

Autoencoder
4 Layers

Loss: Area weighted MSE

ensemble mean

Observations
Copernicus 

ERA5 Reanalysis 

compute anomalies
detrend



Preliminary Results: Surface Temperature

NN adjusted forecast error Linear bias adjusted forecast error

Preliminary Results: Near-Surface Air Temperature

Init year 2011 (Test year 1)  Lead Time 6 Months ( June)
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[K]

Raw forecast error

Init year 2018 (Test year 7)  Lead Time 6 Months ( June)



Preliminary Results: Surface Temperature

NN adjusted forecast error Linear bias adjusted forecast error

Preliminary Results: Near-Surface Air Temperature

Init year 2011 (Test year 1)  Lead Time 6 Months ( June)
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Raw forecast error

Init year 2018 (Test year 7)  Lead Time 6 Months ( June)



Preliminary Results: Surface Temperature

NN adjusted forecast error Linear bias adjusted forecast error

Preliminary Results: Near-Surface Air Temperature

Init year 2011 (Test year 1)  Lead Time 24 Months ( January)
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[K]

Raw forecast error

Init year 2018 (Test year 7)  Lead Time 24 Months ( January)



Preliminary Results: Surface TemperaturePreliminary Results: Surface Temperature Subregion 11

Western Subpolar North Atlantic
 

Area of large errors partly due to 
erroneous trends in the reanalysis used 

for initialization, and to strong model 
climatological bias

CanESM5 SST Correlation Skill Forecast Year 2

[Sospedra-Alfonso et al. 2021]



Preliminary Results: Surface Temperature 12Preliminary Results: Near-Surface Air Temperature

NN adjusted forecast error Linear bias adjusted forecast error Raw forecast error

Init year 2011 (Test year 1)  Lead Time 6 Months ( June)

Init year 2018 (Test year 7)  Lead Time 6 Months ( June) [K]



Conclusions and next steps 13

Early model still lead-time and initialization year independent

Current focus: learning temporal structure of bias

Challenge: consideration of bias along two temporal dimensions 
                    (lead time, initialization year)

Improvements to architecture: ConvLSTM [Shi et al. 2015]
                                                                          Spatially-aware loss functions

Capture model and forecast uncertainties



Model Comparisons and
Preliminary Results



Model comparison and preliminary results A1

Model 1: Fully-connected Autoencoder

Model 2: Convolutional Autoencoder with skip-connections (U-Net like architecture)
                 Already applied for sub-seasonal forecast adjustment, fe. [Han et al. 2021]
                 
Training performed on all lead times (focus on lead times 1 – 24)

First results: - NN-based adjustment improves upon traditional debiasing methods 
                            for some lead times
                      - training single model on all lead times shows better performance  
                            than using a separate model for every lead time
                      - Conv. Autoencoder with skip-connections does not outperform  
                            fully-connected Autoencoder
 



Pattern RMSE distribution over test years (global) A2



Model RMSE, Test Year 2016 A3

Autoencoder 

RMSE = 0.964

U-Net 

RMSE = 0.998

Model Avg.

RMSE = 0.995



Model RMSE, Test Year 2020 A4

Autoencoder 

RMSE = 1.075

U-Net 

RMSE = 1.081

Model Avg.

RMSE = 1.053
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