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Abstract

Decadal climate predictions are key to inform adaptation strategies in a warming
climate. Coupled climate models used for decadal predictions are, however, im-
perfect representations of the climate system causing forecast biases. Biases can
also result from a poor model initialization that, when combined with forecast
drift, can produce errors depending non-linearly on lead time. We propose a deep
learning-based bias correction approach for post-processing gridded forecasts to
enhance the accuracy of decadal climate predictions.

1 Motivation and problem statement

Decadal or near-term climate prediction refers to climate forecasts on the range of a year to a decade.
Unlike climate projections, which simulate the climate response to external forcing such as changes
in greenhouse gas concentrations and aerosols, decadal predictions also simulate the climate response
to unforced variations such as El Niño-Southern Oscillation (ENSO) and other modes of internal
climate variability. As part of the Wold Climate Research Program (WCRP), the Decadal Climate
Prediction Project (DCPP) [1] offers quasi-real-time decadal forecasts for potential users, whereas the
World Meteorological Organization (WMO) Global Annual to Decadal Climate Update (GADCU) is
produced annually to inform society on the state of the climate for the next 5 years [2].

Decadal forecasts typically drift from their observation-based initial conditions toward the uncon-
strained model climatology, which may be far from observations. Consequently, operational decadal
predictions often require some form of data post-processing to attain skill. This is often done using
simple linear methods. Given the importance of climate predictions for informed adaptation strategies,
the exploration of novel post-processing methods to correct forecast bias and drift is an important
step to improve adaptation. We propose a deep learning model as a data post-processing tool for
gridded climate predictions to enhance forecast skill.

2 Background and previous work

While many studies describe adjustments of weather and subseasonal-to-seasonal (S2S) forecasts,
there is limited work devoted to adjustments of decadal predictions, partly due to their relatively
recent use, unique long-time range, drifts, and potential for erroneous trends. A simple approach is
climatological bias correction, for which the difference between the modeled and observed clima-
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Figure 1: Annual averaged a) raw and b) trend corrected ensemble mean decadal forecasts (colored
dots) of global mean surface temperature initialized from 1961 to 2015 obtained with CanESM5.
Forecast years go from 1 (violet dots) to 10 (red dots). Also shown are the observation-based
estimates (black curve), the ensemble mean assimilation runs used to initialize the forecasts (magenta
curve), the ensemble mean historical simulations (gray curve), and the ensemble spread of historical
simulations as a measure of uncertainty resulting from internal variability (gray band).

tologies, taken over a common period, is removed from the forecast [1]. While this basic approach
can provide substantial skill improvements compared to raw predictions, it is insufficient to correct
erroneous variability and trends. For climate variables such as temperature that exhibit strong long-
term changes, trend corrections depending on lead time are often used [3], whereas for variables with
a small signal-to-noise ratio such as precipitation [4], a variance adjustment may be required [5].
Other bias-correction methods include the use of linear dependence of the drift on the observed initial
conditions [6], the use of polynomial representations of the forecast drift and ensemble variability [7],
and a dynamic modeling of the drift [8]. Despite these efforts, a comprehensive method for decadal
forecast adjustment is lacking, as the accuracy of the above methods typically depend on climate
variables, skill measure, initial conditions, and lead time.

As an example, Figure 1 shows raw and trend adjusted ensemble mean decadal forecasts of global
mean air surface temperature obtained with version 5 of the Canadian Earth system model (CanESM5-
DP) [9]. Also shown are the ERA5 [10] observation-based estimates, the ensemble mean of the
constrained runs used to initialize the forecasts, and the ensemble mean of the unconstrained historical
simulations. The latter reproduces the forced warming, but cannot reproduce the observed internal
variability, thus highlighting the need for decadal predictions. The initial conditions are warmer
than observed, leading to raw forecasts that have significant initial biases, and drift towards the
unconstrained historical simulations. These biases are improved with climatological and linear trend
correction, but all errors cannot be resolved with these simple methods.

While machine learning and deep learning have been used for forecast adjustment, most research
focuses on synoptic and subseasonal predictions. Approaches include the use of Kalman filters
to adjust air quality forecasts [11], random forests for wind forecast adjustment [12], and weather
and seasonal climate forecast adjustment [13]. An early approach using neural networks (NNs) for
post-processing ARPS temperature forecasts is given in [14]. Rasp and Lerch [15] propose a NN
to adjust ECMWF ensemble weather forecasts using a distributional regression architecture able
to predict outputs with heteroscedastic variance. Kim et al. [16] use a long short term memory
(LSTM) network with a single hidden layer for Madden-Julian Oscillation (MJO) forecast adjustment,
reducing multi-model forecast errors up to 90%. Convolutional neural networks (CNNs) have been
used in several works to correct gridded weather forecasts [17–20]. Lerch and Polsterer [21] combine
a CNN with an autoencoder for ECMWF ensemble weather forecast adjustment. A generative model
approach to bias correction of climate forecasts using a generative adversarial network (GAN) is
described by François et al. [22].

3 Data

We use the 40-member ensemble of gridded global temperature and precipitation decadal predictions
from CanESM5 contributing to the DCPP endorsed by phase 6 of the Coupled Model Intercomparison
Project [CMIP6, 23]. The data includes retrospective forecasts initialized annually in 1960-2019 [24]
and quasi-real-time forecasts initialized in 2020-2021 [25]. For forecast adjustment, we use several
gridded observation-based products including air temperature reanalyses and station-based products
examined in [26], and the Global Precipitation Climatology Project GPCP2.3 product [27]. When
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Figure 2: January sea surface temperature anomalies in the sub-polar North Atlantic from a)
observation-based ERSSTv5 [32], and CanESM5-DP based b) raw and c) NN-based adjusted forecasts
at 12-month lead averaged over the 2006–2018 test period. Anomalies are taken from temperature
averaged over the training period, and range from below -1◦C (dark blue) to above 1◦C (dark red).

possible, we use a blend of multiple observation-based products to reduce potential uncorrelated
random errors that can degrade forecast skill regardless of model biases [26].

4 Technical approach and methodology

A convolutional architecture will be used to preserve spatial dependencies in the data. To consider
temporal correlations, we combine this approach with a sequential neural network architecture, such
as recurrent neural networks (RNN) [28]. We further plan to test other sequential architectures like
self-attention [29] and 1D CNNs [30]. The model input are raw, uncorrected retrospective forecasts.
The objective of the model is to learn and correct the systematic forecast errors using observational
data, and output the adjusted forecasts. This trained model will then be used to adjust forecasts for
future years. As a baseline, we will use corrections with linear models, which are currently employed
to adjust operational decadal forecasts. Forecast adjustment can either be based on lead time or on
forecast initialization year. Previous studies focus on correction methods with models that depend on
lead time, however we will explore a model that learns from the forecast drift along the lead time
dimension. This way, lead-time dependent bias patterns could be exploited during model training.
Forecast bias correction can either be applied to every single ensemble member or the ensemble
mean. We will explore both options, although recent research suggests that correcting the forecast
ensemble mean may be preferable, since the noise component in the single members may obscure the
forecasts systematic errors to be learned by the network [16].

5 Expected outcome and impact

Our main objective and expected outcome is two-fold, (1) to improve accuracy of operational
decadal predictions, and (2) to gain further understanding of climate model biases for research and
model development. We will train our model with retrospective forecasts contributing to the DCPP
Component A, and use the trained network to improve the quasi-real-time predictions contributing to
DCPP Component B. We will first focus on CanESM5-DP, which is known to have strong biases in
the subpolar North Atlantic region severely limiting its forecast skill [31]. We anticipate significant
improvements over this region, as suggested by Figure 2 showing preliminary results of adjusted
temperature anomalies obtained with a simple dense feed-forward NN. The adjusted temperature and
precipitation forecasts will be shared on a publicly accessed repository for dissemination and future
use. We plan to extend our work to other coupled models contributing to DCPP, and also to those
participating in the WMO-GADCU [2] that do not contribute to the DCPP. We also intend to include
other key climate variables in our study, such as sea level pressure, and hydroclimatic variables such
as soil moisture and snow water equivalent. Because operational near-term climate predictions inform
current adaptation strategies to increase resilience in a warming climate, we expect more accurate
decadal forecasts to have a significant impact on society and climate-sensitive socioeconomic sectors.
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