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Abstract
Global flood risk has increased due to worsen-
ing extreme weather events and human migra-
tion into growing flood-prone areas. Accurate,
high-resolution, and near-real time flood maps
can address flood risk by reducing financial loss
and damage. We propose Memory To Map ,
a novel machine learning approach that utilizes
bi-temporal context to improve flood water seg-
mentation performance for Sentinel-1 imagery.
We show that the inclusion of unflooded context
for the area, or “memory,” allows the model to
tap into a “prior state” of pre-flood conditions,
increasing performance in geographic regions in
which single-image radar-based flood mapping
methods typically underperform (e.g. deserts).
We focus on accuracy across different biomes to
ensure global performance. Our experiments and
novel data processing technique show that the con-
fluence of pre-flood and permanent water context
provides a 21% increase in mIoU over the base-
line overall, and over 87% increase in deserts.

1. Introduction
Climate change-driven flood disasters are rapidly increasing
in frequency and magnitude (UNDRR, 2015). More people
are affected by flooding than any other climate disaster (Hal-
legatte et al., 2017; CRED, 2019), hindering sustainable
development. Research consistently shows that relative
property loss caused by floods are highest in places of social
vulnerability (UNDRR, 2019; Ceola et al., 2014), exacer-
bating economic disparities (Tellman et al., 2020). Readily
available remote sensing satellite data allows for scalable,
low cost, near-real time disaster monitoring and mapping
in order to support response and relief. Multidisciplinary
approaches to flood detection algorithms, leveraging con-
ventional remote sensing, hydrology, and machine learning,
are paramount to using satellite imagery for effective flood
detection (Mateo-Garcia et al., 2021).

Imagery from Sentinel-1, ESA’s synthetic aperture radar

Figure 1. Memory To Map inference pipeline. The model com-
bines multi-temporal contextual information, (pre-flood and GSW)
with flooded radar imagery to improve segmentation performance
for Sentinel-1. We hypothesize that the subtle changes in backscat-
ter between the memory context and the flood radar imagery could
potentially be exploited by the model to improve performance.

(SAR) satellite, is commonly used for flood mapping as it is
free, easily accessible, cloud penetrating (i.e. the image is
not affected by the presence of clouds or other atmospheric
conditions), and systemically acquired (Potin et al., 2014).
However, the accuracy of SAR-derived flood maps is often
reduced due to multiple land surfaces - such as sandy river
banks, deserts, recently cleared fields, and terrain shadows -
appearing similar to flood waters in backscatter images.

Memory To Map introduces a pre-flood image of the
scene and a permanent water layer (derived from the the
Joint Research Council Global Surface Water data v1.1
(hereafter “GSW”) (Pekel et al., 2016)) as input channels
to the network which provide unflooded context, thereby
leveraging change detection when segmenting water. Our
approach resulted in significant improvements over the base-
line, as well as unique improvements in deserts and other
areas that are particularly difficult for flood mapping us-
ing SAR. To the best of our knowledge, this is the first
work of its type tested globally with accuracy measured
across different biomes, motivated by the frequent flooding
in different biomes and the necessity of globally performant
models. The framework introduced here for training and
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validating globally-applicable models is a key contribution
of this work. Our approach can also serve as a template
for using temporal information in semantic segmentation to
detect flooding in SAR images.

We demonstrate a way to utilize accessible data sources
to improve semantic segmentation of floods by 21% mean
intersection over union (mIoU) overall, creating a model
for generating high quality flood maps across domains. We
improved performance in uniquely challenging regions such
as deserts, in which we found a 87% increase in mIoU,
making a flood mapping network useful for global applica-
tions. The use of a globally-distributed dataset for training
and validation constitutes a major benefit of this model and
substantially broadens the applicability of our results. As
shown by the reliance of governments and aid agencies on
flood maps derived from satellite imagery (Ho et al., 2021),
these maps enable better global preparedness for and robust
response to increasingly common climate disasters.

2. Related Work
SAR-based flood segmentation approaches often rely on
the assumption that inundated areas have lower backscatter
than the rest of the scene (Chini et al., 2017; Martinis et al.,
2015). While this is often true, inundation may actually
increase backscatter compared to unflooded conditions in
certain situations, such as flooded vegetation (Tsyganskaya
et al., 2018; Zhang et al., 2020). Approaches relying on
phase information rather than backscatter have been used
for flood detection (Shen et al., 2019), but these methods are
often very sensitive to non-target change and can be difficult
to implement and interpret.

There are few SAR-based flood segmentation methods that
have been demonstrated to be effective globally (Mateo-
Garcia et al., 2021; Bonafilia et al., 2020; Rambour et al.,
2020). Quantifying our model’s accuracy in different
biomes may help users to understand its applicability to
specific regions. Many others have discussed performance
differences of SAR-based flood mapping approaches in spe-
cific geographic areas and conditions (Giustarini et al., 2013;
Zhang et al., 2020; Tsyganskaya et al., 2018). The use of
RESOLVE biomes (Dinerstein et al., 2017) allows us to an-
alyze chips based on their biogeoclimatic similarity without
the need for subjective grouping. Furthermore, we believe
the use of biomes as a sampling stratum for developing
globally-applicable machine learning models has value be-
yond the scope of this work, and may be worth consideration
for other computer vision tasks which must perform well
across many geographic areas.

Recent work in deep learning has leveraged recurrent neural
networks for bi-temporal change detection in using satel-
lite data (Lyu et al., 2016; Ma et al., 2019), as well as
multimodal inputs that leverage context for semantic label-

ing (Audebert et al., 2018). Our work combines elements of
both of these approaches, leveraging a standard segmenta-
tion architecture with multimodal temporal information to
improve the accuracy of water maps.

3. Memory To Map
We describe the three main contributions of our work:

1. A novel data processing technique that combines
flooded, pre-flood, and GSW data to produce state
of the art segmentation results.

2. A U-Net training scheme to leverage change informa-
tion and context to segment floods.

3. Utilization of global biome information to assess bal-
ance of model performance across geoclimactic re-
gions, with a focus on desert biomes.

3.1. Dataset

We describe the generation of the three distinct inputs to
our network; permanent water from GSW, pre-flood, and
flooded chips. We use the term “chips” to indicate 512x512
pixel crops of images, in accordance with domain terminol-
ogy.

Flooded Chips: Candidate flood events were selected from
the Dartmouth Flood Observatory (Brakenridge, 2010) and
filtered based on the following criteria: (1) flood events were
discarded unless there were Sentinel-1 and Sentinel-2 im-
ages within four days of each other for which at least 50% of
the Sentinel-2 image overlapped with the Sentinel-1 image.
This was required so that Sentinel-2, which carries a multi-
spectral sensor sensitive to visible and infrared wavelengths,
could be used to support the creation of high-quality hand
labels; the Sentinel-2 images were not used in this study
beyond the generation of hand labels. (2) The Sentinel-2
image was required to have less than 50% cloud cover. (3)
The dataset was balanced to remove over-representation of
common biomes (e.g. Tropical & Subtropical Grasslands,
Savannas & Shrublands) by removing flood events based
on their biome (Dinerstein et al., 2017). These flood events
were then divided into 512x512 chips from a total of 125
flood events. For each chip, a team of domain scientists
hand-labeled segmentation masks by cross-referencing the
Sentinel-1 and corresponding Sentinel-2 chips.

Pre-Flood Chips: To generate pre-flood chips, we con-
ducted a search based on the original Sentinel-1 image for
each flooded chip. We searched for a pre-flood Sentinel-1
image meeting three criteria: (1) the pre-flood image must
be acquired from the same orbit direction as the flood image
from which the flooded chip was derived (i.e. the ascend-
ing or descending pass); (2) the image must be acquired
from the same relative orbit number; and (3) the pre-flood
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image must be acquired 14-35 days prior to the flooded
image. This date range was chosen to allow for at least
one Sentinel-1 same-orbit acquisition while exceeding the
global median flood duration to increase the likelihood that
the image was acquired in an unflooded condition (Najibi &
Devineni, 2017). If multiple images meet all three of these
criteria, the image acquired nearest in time to the flooded
image was selected as the pre-flood image. If no images
meeting these criteria were found, the chip was discarded.
Out of the total 3513 available chips, pre-flood images for
2250 of them were found and the others were not used.

Permanent Water Chips: For each chip, we created a
permanent water chip based on GSW data. To do so, we
cropped the Global Surface Water occurrence data to the
extent of each of our Sentinel-1 chips. The occurrence data
was then resampled to 10-meter resolution.

3.2. Training Methodology

We had 2250 total chips from 125 flood events, divided into
1820 training and 430 test. We devised testing and training
splits by testing random seeds to optimize for even distribu-
tion of flood water per biome and chips per flood event. We
used an Adam optimizer and trained on GeForce RTX 3090
GPU. We modify the U-Net (Yakubovskiy, 2020) to accept
additional inputs by increasing the number of input chan-
nels and train with a batch size of 32, initial learning rate
of 0.001, patience of 8, random cropping data augmenta-
tions, pretrained timm efficientnet b1 backbone (Wightman,
2019), and test with an identical network.

4. Results
We trained and benchmarked our network with the flooded
chip, flooded and GSW chips, flooded and pre-flood chips,
and lastly flooded, GSW, and pre-flood chips. As shown in
Table 1, the network performs best overall when supplied
with both the GSW and pre-flood chips. We measured model
performance both with overall mIoU and overall F1 Score.

Model
Inputs Flooded

Flooded
Pre-Flood

Flooded
GSW

Flooded
GSW

Pre-Flood
mIoU 0.62 0.66 0.72 0.75

F1 Score 0.77 0.80 0.84 0.87

Table 1. Model performance across input channels. The model that
includes flooded, GSW, and pre-flood chips perform consistently
better than models with fewer inputs. Results tallied for all biomes.

To assess geographic variation in model performance, we
assigned each chip a biome based on the RESOLVE biome
corresponding to the majority of its area. Of the biomes in-
cluded, those with the lowest average Sentinel-1 backscatter
are Deserts & Xeric Shrublands (henceforth Deserts) and

Tropical & Subtropical Grasslands, Savannas & Shrublands.
As shown in Figure 2, just including a pre-flood chip did
not improve model performance in these biomes; however
including GSW data substantially improved model perfor-
mance in Deserts. The model which included the flooded,
pre-flood, and GSW chips was the best-performing model
in the majority of the evaluated biomes. For a selection of
predictions for each biome, see Appendix Figure 4.

Figure 2. Comparison of four models across different RESOLVE
biomes. The biomes are arranged from least to most represented
in the data2. The model trained on flooded, GSW, and pre-flood
chips performed better on Deserts than the model trained on just
flooded chips by 87% mIoU.

We sought to improve model performance in uniquely chal-
lenging biomes for SAR such as Deserts. To assess this,
we trained all four of our networks on only Deserts, all
biomes except Deserts, and all biomes, and in all cases
tested only on Deserts. As shown in Figure 3, networks
trained on only Deserts had the best performance, while
networks with flooded and GSW and pre-flood, GSW, and
flooded chips performed comparably well when trained on
all biomes. The network provided with pre-flood, GSW, and
flooded chips trained on all biomes except Deserts had the
best performance compared with models with fewer inputs.

Figure 3. Four models trained on Deserts, every biome except
Deserts, and every biome, and tested on Deserts.
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5. Analysis
Given the challenges with segmenting water from Sentinel-1
SAR imagery, we developed a segmentation network and
algorithm that leveraged context to generate better flood seg-
mentation masks at the high-resolution scale needed to sup-
port disaster resilience. We performed a novel cross-biome
global analysis, and found that our method significantly im-
proved network performance in uniquely challenging low
backscatter regions such as deserts.

While we found that simply providing the model with per-
manent water data significantly improved performance over
segmentation with a single flooded chip, providing perma-
nent water and a pre-flood chip provided the best results.
This is possibly because the model is able to leverage the
combination of the permanent water mask and the visual rep-
resentation of the permanent water state (i.e. the pre-flood
chip) to then better interpret unique water/land boundaries.

Notably, we found that providing the network with the pre-
flood chip and flooded chip only slightly improved perfor-
mance over simply providing the flooded chip. This is likely
due to the network requiring more context for the distinction
between the two input chips.

5.1. Biome Analysis

As expected, the models which only included a flooded chip
performed poorly in biomes with low average backscatter
(Figure 2). For Desert chips, models which included GSW
data performed better, and the model which included both
GSW and a pre-flood chip was the best performing. The
inclusion of the GSW data is likely helping the model distin-
guish between deserts and open water, which have similar
backscatter intensities. These results suggest that informa-
tion about permanent water is important for SAR-based
water segmentation in areas with low average backscatter.

Models provided with flooded, pre-flood, and GSW data,
when trained on all biomes except Deserts, perform best
on Deserts compared to models with fewer inputs (Figure
3). The models with both forms of context are best able
to generalize to unseen biomes. This suggests that, when
developing a network with a limited amount of training
data representing a key challenge area, providing pre-flood
and GSW context together can boost performance. The
ability to generalize is necessary for deployment, especially
when training data from the main application or specific

2The biome labels refer to Tropical & Subtropical Dry
Broadleaf Forests (59 chips); any other biomes (110 chips); Deserts
& Xeric Shrublands (128 chips); Temperate Grasslands, Savannas
& Shrublands (192 chips); Temperate Broadleaf & Mixed Forests
(389 chips); Tropical & Subtropical Moist Broadleaf Forests (633
chips); and Tropical & Subtropical Grasslands, Savannas & Shrub-
lands (731 chips).

geographic regions may be missing.

The approach described in this paper has some important
limitations. Generating context data for each chip involves
extra data preparation and processing. Selecting appropriate
pre-flood images requires some assumptions about the dura-
tion of floods that may not always be true; for example, a
“pre-flood” image acquired 14 days before the flooded image
may still contain flooding. Optimal selection of pre-flood
images may also vary among geographic areas and flood
types. Additionally, this model is only usable if there is a
valid pre-flood image available; simply using GSW yields
significant performance boosts and is universally accessible.

As the results of this study show, the inclusion of context did
not always improve the model’s performance; in Tropical &
Subtropical Grasslands, Savannas & Shrublands, the model
which included both GSW and pre-flood chips performed
worse than the model with only flooded chips. Changes
in the backscattering properties of these grasslands due to
rainfall create spatially-varying changes in the backscat-
ter between the pre-flood and flooded images, potentially
explaining this dip in performance.

6. Discussion and Conclusion
Memory To Map is a prototype for utilizing contextual
information to improve the performance of semantic seg-
mentation of flood water in Sentinel-1 SAR Imagery. Im-
proving the accuracy and reliability of these flood maps
allows for near-real time flood monitoring even in adverse
weather conditions, a common precedent to extreme flood
events. These near-real time maps can then be used for disas-
ter relief and response, as well as for planning for necessary
infrastructure for climate resilience. Our novel biome-based
analysis demonstrates the applicability of this methodology
to global domains. Providing context to segmentation net-
works results in a significant performance boost in areas
with relatively low backscatter, such as deserts, making the
algorithm globally performant.

Future work should include a more rigorous exploration
of context inputs. To emphasize change detection based
on seasons, a pre-flood image could be constructed as a
pixelwise statistical measure (such as average or z-score)
of backscatter values taken at even intervals across the pre-
vious year. Additional contextual information can also be
constructed based on publicly available datasets, such as
pixelwise masks containing biome, land cover, agricultural,
and population density information. Topographic informa-
tion could also provide the network with context for water
drainage and movement patterns over time. As the successes
of this approach vary across biomes, using an ensemble ap-
proach to decide which model is best for detecting flood
water in a scene may provide the best results globally.
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Reliable and high-resolution flood detection methods al-
low for the development of effective disaster relief sys-
tems. These system can provide critical services to give
governments and aid organizations the resources to rebuild,
replant crops, access international aid, and more. The de-
scribed novel data processing technique produces segmenta-
tion models that are performant regardless of biogeography
and generalize effectively, creating consistent flood maps
that can be deployed to mitigate harm to climate vulnerable
communities, regardless of their location.

References
Audebert, N., Le Saux, B., and Lefèvre, S. Beyond rgb:

Very high resolution urban remote sensing with multi-
modal deep networks. ISPRS Journal of Photogrammetry
and Remote Sensing, 140:20–32, 2018. ISSN 0924-2716.
doi: https://doi.org/10.1016/j.isprsjprs.2017.11.011.
URL https://www.sciencedirect.com/
science/article/pii/S0924271617301818.
Geospatial Computer Vision.

Bonafilia, D., Tellman, B., Anderson, T., and Issenberg,
E. Sen1floods11: A georeferenced dataset to train and
test deep learning flood algorithms for sentinel-1. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June
2020.

Brakenridge, G. R. Global active archive of large flood
events. Dartmouth Flood Observatory, University of
Colorado, 2010.

Ceola, S., Laio, F., and Montanari, A. Satellite nighttime
lights reveal increasing human exposure to floods world-
wide. Geophysical Research Letters, 41(20):7184–7190,
2014. doi: 10.1002/2014gl061859.

Chini, M., Hostache, R., Giustarini, L., and Matgen, P. A hi-
erarchical split-based approach for parametric threshold-
ing of sar images: Flood inundation as a test case. IEEE
Transactions on Geoscience and Remote Sensing, 55(12):
6975–6988, 2017. doi: 10.1109/TGRS.2017.2737664.

CRED. 2018: Extreme weather events affected 60 million
people. Centre for Research on the Epidemiology of Dis-
asters CRED, Jan 2019. URL https://www.cred.
be/2018-review-disaster-events.

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess,
N. D., Wikramanayake, E., Hahn, N., Palminteri,
S., Hedao, P., Noss, R., and et al. Ecoregion-
based approach to protecting half the terrestrial realm,
Apr 2017. URL https://academic.oup.com/
bioscience/article/67/6/534/3102935.

Giustarini, L., Hostache, R., Matgen, P., Schumann, G.
J.-P., Bates, P. D., and Mason, D. C. A change detec-
tion approach to flood mapping in urban areas using
TerraSAR-x. IEEE Transactions on Geoscience and Re-
mote Sensing, 51(4):2417–2430, April 2013. doi: 10.
1109/tgrs.2012.2210901. URL https://doi.org/
10.1109/tgrs.2012.2210901.

Hallegatte, S., Vogt-Schilb, A., Bangalore, M., and Rozen-
berg, J. Unbreakable: building the resilience of the poor
in the face of natural disasters. World Bank, 2017.

Ho, J. C., Vu, W., Tellman, B., Dinga, J. B., N’diaye,
P. I., Weber, S., Bauer, J.-M., Schwarz, B., Doyle, C.,
Demuzere, M., Anderson, T., and Glinskis, E. Chapter
6 - from cloud to refugee camp: A satellite-based
flood analytics case-study in congo-brazzaville. In
Schumann, G. J.-P. (ed.), Earth Observation for Flood
Applications, Earth Observation, pp. 131–146. Elsevier,
2021. ISBN 978-0-12-819412-6. doi: https://doi.org/
10.1016/B978-0-12-819412-6.00006-7. URL https:
//www.sciencedirect.com/science/
article/pii/B9780128194126000067.

Lyu, H., Lu, H., and Mou, L. Learning a transferable
change rule from a recurrent neural network for land
cover change detection. Remote Sensing, 8(6), 2016.
ISSN 2072-4292. doi: 10.3390/rs8060506. URL https:
//www.mdpi.com/2072-4292/8/6/506.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., and
Johnson, B. A. Deep learning in remote sens-
ing applications: A meta-analysis and review.
ISPRS Journal of Photogrammetry and Remote
Sensing, 152:166–177, 2019. ISSN 0924-2716.
doi: https://doi.org/10.1016/j.isprsjprs.2019.04.015.
URL https://www.sciencedirect.com/
science/article/pii/S0924271619301108.

Martinis, S., Kersten, J., and Twele, A. A fully
automated terrasar-x based flood service. IS-
PRS Journal of Photogrammetry and Remote
Sensing, 104:203–212, 2015. ISSN 0924-2716.
doi: https://doi.org/10.1016/j.isprsjprs.2014.07.014.
URL https://www.sciencedirect.com/
science/article/pii/S0924271614001981.

Mateo-Garcia, G., Veitch-Michaelis, J., Smith, L., Oprea,
S. V., Schumann, G., Gal, Y., Baydin, A. G., and Backes,
D. Towards global flood mapping onboard low cost satel-
lites with machine learning. Scientific Reports, 11(1),
2021. doi: 10.1038/s41598-021-86650-z.

Najibi, N. and Devineni, N. Recent trends in frequency and
duration of global floods. Earth System Dynamics Dis-
cussions, pp. 1–40, 07 2017. doi: 10.5194/esd-2017-59.

https://www.sciencedirect.com/science/article/pii/S0924271617301818
https://www.sciencedirect.com/science/article/pii/S0924271617301818
https://www.cred.be/2018-review-disaster-events
https://www.cred.be/2018-review-disaster-events
https://academic.oup.com/bioscience/article/67/6/534/3102935
https://academic.oup.com/bioscience/article/67/6/534/3102935
https://doi.org/10.1109/tgrs.2012.2210901
https://doi.org/10.1109/tgrs.2012.2210901
https://www.sciencedirect.com/science/article/pii/B9780128194126000067
https://www.sciencedirect.com/science/article/pii/B9780128194126000067
https://www.sciencedirect.com/science/article/pii/B9780128194126000067
https://www.mdpi.com/2072-4292/8/6/506
https://www.mdpi.com/2072-4292/8/6/506
https://www.sciencedirect.com/science/article/pii/S0924271619301108
https://www.sciencedirect.com/science/article/pii/S0924271619301108
https://www.sciencedirect.com/science/article/pii/S0924271614001981
https://www.sciencedirect.com/science/article/pii/S0924271614001981


Memory to Map: Improving Radar Flood Maps With Temporal Context and Semantic Segmentation

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.
High-resolution mapping of global surface water and its
long-term changes. Nature, 540(7633):418–422, 2016.
doi: 10.1038/nature20584.

Potin, P., Rosich, B., Roeder, J., and Bargellini, P. Sentinel-1
mission operations concept. In 2014 IEEE Geoscience
and Remote Sensing Symposium. IEEE, July 2014. doi:
10.1109/igarss.2014.6946713. URL https://doi.
org/10.1109/igarss.2014.6946713.

Rambour, C., Audebert, N., Koeniguer, E., Saux, B. L., Cru-
cianu, M., and Datcu, M. Flood detection in time series of
optical and sar images. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, XLIII-B2-2020:1343–1346, 2020. doi:
10.5194/isprs-archives-xliii-b2-2020-1343-2020.

Shen, X., Anagnostou, E. N., Allen, G. H., Robert
Brakenridge, G., and Kettner, A. J. Near-real-
time non-obstructed flood inundation mapping us-
ing synthetic aperture radar. Remote Sensing of
Environment, 221:302–315, 2019. ISSN 0034-
4257. doi: https://doi.org/10.1016/j.rse.2018.11.
008. URL https://www.sciencedirect.com/
science/article/pii/S0034425718305169.

Tellman, B., Schank, C., Schwarz, B., Howe, P. D., and
de Sherbinin, A. Using disaster outcomes to validate
components of social vulnerability to floods: flood dam-
age and property damage across the usa. SocArXiv,
Jun 2020. doi: 10.31235/osf.io/byrgu. URL osf.io/
preprints/socarxiv/byrgu.

Tsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R.
Detection of temporary flooded vegetation using sentinel-
1 time series data. Remote Sensing, 10(8):1286, 2018.
doi: 10.3390/rs10081286.

UNDRR. The human cost of weather-related disasters 1995-
2015. Centre for Research on the Epidemiology of Disas-
ters CRED, 2015.

UNDRR. Global Assessment Report on Disaster Risk Re-
duction 2019. 05 2019. ISBN 978-92-1-004180-5.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Yakubovskiy, P. Segmentation models py-
torch. https://github.com/qubvel/
segmentation_models.pytorch, 2020.

Zhang, M., Chen, F., Liang, D., Tian, B., and Yang, A. Use
of sentinel-1 grd sar images to delineate flood extent in
pakistan. Sustainability, 12(14), 2020. ISSN 2071-1050.
doi: 10.3390/su12145784. URL https://www.mdpi.
com/2071-1050/12/14/5784.

7. Appendix

Figure 4. We provide a few visual examples in Figure 4 of the
segmentation outputs for various biomes, from the best performing
model with inputs of all three flooded, pre-flood, GSW, and the
baseline model with flooded images as inputs.

https://doi.org/10.1109/igarss.2014.6946713
https://doi.org/10.1109/igarss.2014.6946713
https://www.sciencedirect.com/science/article/pii/S0034425718305169
https://www.sciencedirect.com/science/article/pii/S0034425718305169
osf.io/preprints/socarxiv/byrgu
osf.io/preprints/socarxiv/byrgu
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://www.mdpi.com/2071-1050/12/14/5784
https://www.mdpi.com/2071-1050/12/14/5784

