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Meet

THNC SR
ACT LOCALLY

Concerned about the Already takes public
environment transport to work, but

would like to live even
more sustainably

Lives in the UK
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Enter the built environment

During construction phase
Building materials and source
Building type (standalone, apartment, ...)

Occupant behavior

+50 tons of embodied CO,
100+ tons over lifetime

Unsplash.com
https://citu.co.uk/citu-live/what-is-the-carbon-footprint-of-a-house
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During operation phase
Weather conditions (geography)
Building and installation properties

+2.5 tons of operational CO, / year
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Electricity source mix
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Carbon intensity of electricity mix

Situation on 27t October, 2021
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A lot more natural gas Mostly renewables via wind
Overall: £240 g CO, Overall: £85 g CO,

https://app.electricitymap.org/zone/GB
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Demand side management

Hot water buffers
Building thermal inertia

Thermal
storage

Forecasting Aulerreiien Demand Energy efficiency
Optimal control reduction Decarbonization

Demand side
management

Time of use pricing
Ancillary services
Carbon arbitrage

Information User Demand
Gamification engagement response

Electric
storage

Electric vehicles and batteries
White goods




Self-consumption

SOLAR POWER SELF-CONSUMPTION

Key:
Typical Household

Power Demand
Exported Solar

kWh . Power
East Facing Panels West Facing Panels
Imported Power
]
8am 12pm 4pm 8pm
Solar Power

Self-Consumption
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The data pipeline

.................

— | Environment

________ o _
Sensors
_________ Yoo —  Electricity, meteo and meta-data, ...
. SensorData _;
v _
Feature Extraction ] Create a (forecast) model for (controllable and
promeee- * non-controllable) demand based on historical
_Representation < data and exogenous variables (ambient
Machineieaming —  conditions, meta-data etc.)
K{I r— Obtain (create?) forecasts for price signal (i.e.
'----rlt-)w-f--g-q--' _ carbon intensity)
Reasoning
5 _
PlaT'ng Use the forecasts to create an
e m—— : | optimal plan for the future that
teeee- _Cl'_?['_____- maximizes an objective while
—— satisfying predefined constraints

Department of Electrical Engineering (Division ELECTA) KU LEUVEN




Elements of the optimization

Household Grid electricity supply Household electric

electricity (carbon intensity) storage (flexibility)
demand
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Constrained optimization

Minimize some costs
subject to some constraints
by changing variable, x
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How to decarbonize

Control variable

Objective Minimize Z(pel Pg)

Constraints subject to
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Different approaches

« Random guessing / grid search
* Pros: ?77?7?

« Cons: Bound to fail for long time horizons (high dimensionality)
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Different approaches

 Random guessing / grid search
* Pros: 7?77

« Cons: Bound to fail for long time horizons (high dimensionality)

 Derivative-free optimization

* Pros: Applicable in almost any setting, may result in near-optimal
solution

« Cons: Requires lots of (recurring) computation, no guarantees
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Different approaches

 Random guessing / grid search
* Pros: 7?77
« Cons: Bound to fail for long time horizons (high dimensionality)

 Derivative-free optimization

* Pros: Applicable in almost any setting, may result in near-optimal
solution

» Cons: Requires lots of (recurring) computation, no guarantees

« Convex optimization
* Pros: Accurate and fast

« Cons: May be infeasible with complex models or require
convexification
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Other considerations

 Forecasts for electricity demand and carbon intensity?
 Actual control of the battery

* Dimensioning the battery

» Local generation with solar PV
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