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Future Power System Networks

Energy 
Trilemma

Affordability

SecuritySustainability

Carbon free operation in 
UK by 2025

High Impact Low Probability Events: 
cascading failures!

Maintain power 
system stability 
(voltage, small 
signal, frequency)

Increased
Uncertainty

and Complexity

One of the greatest challenges
of today’s world is tackling the
problem of climate change
and miOgate its effects on the
ecosystem and mankind[1].

Greenhouse gases like CO2
emiVed in serving the energy
needs of modern society.

[1] Ringo Doe, “ Goals of UK COP26 conference on climate change”, May 2021.



Cascading Failures in Power Systems

Notable Blackouts in the past
• Western US, August 10 1996, cascading failure
• Northeast US and Canada, August 14, 2003 ~ 50 million people
• California, Mexico, Arizona, September 8, 2011
• South Australia, 28 September, 2016
• Northern India, July 30-31 ~ 30 million people
• UK Blackout, 09 August 2019
• Texas Rotating Blackout, February 2021

Important to consider : Size of blackout (in MW) 
as well social cost of blackouts !

A quick succession of multiple component failures usually triggered by one or
more disturbance events such as extreme weather, equipment failure, or
operational errors, and might also lead to a blackout[2]

[2] Kai Sun, Yunhe Hou, Wei Sun, and Junjian Qi. Power system control under cascading failures: understanding, mitigation, and system restoration. John Wiley & Sons, 2019. 



State of the Art 
Model based[3]

• Purely topological model - neglect the physics of power flow - do not address the non-local behaviour of cascading

failures.

• Quasi steady state based on AC/DC power flow - do not address the system behaviour in case of islanding as power

flow does not converge.

• Full blown dynamic models - hybrid models of power system, along with dynamic components, RE, protection

devices, etc—- hidden failures of protection systems, huge computational effort, modelling detail, incorrect

parameter settings/changes in parameters in field.

• Hybrid models with exogenous inputs like weather related events.

Data-driven

•Early warning signs of critical transitions

•Markov Chain based cascade evolution

•PDF of blackout size

•Sampling of test cases (Random Chemistry approach etc,)

•Graph based

•Interaction Graph

•Tree-partition

Machine Learning/Deep learning

[3] Vaiman et al., "Risk Assessment of Cascading Outages: Methodologies and Challenges," in IEEE Trans. on Power Syst., vol. 27, no. 2, pp. 631-641, May 2012.



Why Graph Convolutional Networks?

Motivated by the spatial aspects of cascading failures, in this work we seek to explore the efficacy of a
Graph Convolutional Networks (GCNs)[4][5] for predicting the occurrence of cascading failures in power
system and comparison of performance with other baseline ML techniques.

Cascading failures in power systems exhibit non-local propagation patterns which make the purely
topological analysis of failures unrealistic.

Mainly four ways by exploiting graph convolution:
• adding a one-dimensional convolutional layer behind the graph convolutional layer.
• adding a long short-term (LSTM) layer or gated recurrent unit (GRU) behind the graph convolutional

layer.
• modifying the original LSTM or GRU, to replace the fully connected layer in LSTM or GRU by graph

convolution.
• representing temporal correlations as new edges of the graph and constructing a new graph with

spatial-temporal correlations.

[4] Bing Yu, Haoteng Yin, and Zhanxing Zhu. SpaQo-temporal graph convoluQonal networks: A deep learning framework for traffic forecasQng. arXiv preprint arXiv:1709.04875, 2017. 
[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. ConvoluQonal neural networks on graphs with fast localized spectral filtering. In Advances in Neural Informa?on 
Processing Systems, 2016. 



Methodology
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Case Study

• Training and testing data is generated by simulating a hybrid model
(including synchronous machines, RES, and associated protection
devices) of modified IEEE 10 machine 39 bus New England Test
System.

• Database of power system features assumed to be captured by
PMU located at every node, and initial faults on different locations
of the power system ~ spatio-temporal data

• Gaussian Kernel Learning using K nearest neighbours is used to form
the adjacency matrix, Aij .

• Binary classification problem

Wind generators

G Synchronous generators



Results
Hyperparameter Description

Initial Learning Rate 0.0002
Learning Rate Decay 0.95

Batch Size 64
Dropout Probability 0.5

Regularization Weight 5 ⇤ 10�4

Size of Chebyshev Filter 5 ⇤ 5
Polynomial Order of Filter 20

Activation Function GLU

Figure 2 & Table 1: A table beside a figure

Table 2: Performance Metrics in Testing Stage (%)

Classifier Accuracy F1 Precision Recall

Logistic Regression 78.9 78.8 78.9 78.8
SVM 81.0 80.6 83.1 80.9
ANN 85.0 84.9 84.9 84.9
GCN 92.1 92.2 91.4 93.2

4 Conclusion and Future Scope123

This work is intended to be an initial study to illustrate the potential of spatial machine learning124

algorithms like GCNs to predict the occurrence of power system cascading failures. Our research125

shows promising results and will motivate a more extensive study of machine/deep learning methods126

for the current problem. A natural extension of this work would be testing other mechanisms of127

constructing the graph adjacency matrix, which might affect the performance of the technique. Data-128

sets with realistic representation of noise and missing data that are representative of real-life power129

systems might improve the robustness of our model. Lastly, the findings of present work could help130

in deployment of mechanisms for predicting cascading failures (in real-time) in a power system131

with high penetration of RES. This in turn serves the higher-level goal of reducing carbon emissions132

by increasing integration of renewable sources while still keeping system secure, and thus helping133

address climate change.134
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• Preliminary findings show that GCNs achieve an accuracy of

92.1%

• The Recall score for GCN is 93.2% which signifies that the GCN

technique correctly predicts the cascade most of the times.

• From Table 1, it is also inferred that for a mid- or large-scale

system as ours, the performance of simple ML methods is not

as good.

• The superior performance of GCN as compared to other

baselines reflects that the detection of cascading failures indeed

benefits from adding the spatial information.

Training Performance

Table 1: Model parameters

Table 2: Performance metrics (%)



Conclusion & Future Work

• This work is intended to be an initial study to illustrate the potential of spatial machine learning for
studying cascading failures.

• Data-sets with realistic representation of noise and missing data that are representative of real-life
power systems might improve the robustness of our model.

• Findings of present work could help algorithms like GCNs to predict the occurrence of power system
cascading failures with high RES penetration.

• This in turn serves the higher-level goal of reducing carbon emissions for the current problem.
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