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One of the greatest challenges
of today’s world is tackling the
problem of climate change
and mitigate its effects on the
ecosystem and mankind(l.,

Greenhouse gases like CO,
emitted in serving the energy
needs of modern society.
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Carbon free operation in Affordability
UK by 2025

BLACKOUT

High Impact Low Probability Events:
Energy cascading failures!

Trilemma

Maintain power
system stability
(voltage, small
signal, frequency)

Sustainability Increased
Uncertainty
and Complexity

[1] Ringo Doe, “ Goals of UK COP26 conference on climate change”, May 2021.
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A quick succession of multiple component failures usually triggered by one or
more disturbance events such as extreme weather, equipment failure, or

operational errors, and might also lead to a blackout!?!

Notable Blackouts in the past

* Western US, August 10 1996, cascading failure

* Northeast US and Canada, August 14, 2003 ~ 50 million people
* California, Mexico, Arizona, September 8, 2011

* South Australia, 28 September, 2016 Important to consider : Size of blackout (in MW)
* Northern India, July 30-31 ~ 30 million people as well social cost of blackouts !

* UK Blackout, 09 August 2019

* Texas Rotating Blackout, February 2021

[2] Kai Sun, Yunhe Hou, Wei Sun, and Junjian Qi. Power system control under cascading failures: understanding, mitigation, and system restoration. John Wiley & Sons, 2019.



State of the Art
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* Purely topological model - neglect the physics of power flow - do not address the non-local behaviour of cascading
failures.

* Quasi steady state based on AC/DC power flow - do not address the system behaviour in case of islanding as power
flow does not converge.

* Full blown dynamic models - hybrid models of power system, along with dynamic components, RE, protection
devices, etc—- hidden failures of protection systems, huge computational effort, modelling detail, incorrect
parameter settings/changes in parameters in field.

* Hybrid models with exogenous inputs like weather related events.

Data-driven

*Early warning signs of critical transitions

*Markov Chain based cascade evolution

*PDF of blackout size

*Sampling of test cases (Random Chemistry approach etc,)
*Graph based

*Interaction Graph

*Tree-partition

Machine Learning/Deep learning

[3] Vaiman et al., "Risk Assessment of Cascading Outages: Methodologies and Challenges," in IEEE Trans. on Power Syst., vol. 27, no. 2, pp. 631-641, May 2012.



Why Graph Convolutional Networks?

Motivated by the spatial aspects of cascading failures, in this work we seek to explore the efficacy of a
Graph Convolutional Networks (GCNs)[#BIfor predicting the occurrence of cascading failures in power
system and comparison of performance with other baseline ML techniques.

Cascading failures in power systems exhibit non-local propagation patterns which make the purely
topological analysis of failures unrealistic.

Mainly four ways by exploiting graph convolution:

e adding a one-dimensional convolutional layer behind the graph convolutional layer.

e adding a long short-term (LSTM) layer or gated recurrent unit (GRU) behind the graph convolutional
layer.

* modifying the original LSTM or GRU, to replace the fully connected layer in LSTM or GRU by graph
convolution.

* representing temporal correlations as new edges of the graph and constructing a new graph with
spatial-temporal correlations.
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[4] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.
[5] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information

Processing Systems, 2016.
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Topology Chebyshev filter I(Z) Topology
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, Framework for spatio—temporal GCN technique
Structure of the input data

(Power system features recorded
at different nodes across time)



Case Study
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Training and testing data is generated by simulating a hybrid model
(including synchronous machines, RES, and associated protection
devices) of modified IEEE 10 machine 39 bus New England Test
System.

Database of power system features assumed to be captured by
PMU located at every node, and initial faults on different locations
of the power system ~ spatio-temporal data

Gaussian Kernel Learning using K nearest neighbours is used to form
the adjacency matrix, A

Binary classification problem
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Table 1: Model parameters gggﬁnhgdyde
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Training Performance *  Preliminary findings show that GCNs achieve an accuracy of
92.1%
* The Recall score for GCN is 93.2% which signifies that the GCN
Table 2: Performance metrics (%) technique correctly predicts the cascade most of the times.
Classifier Accuracy  Fl Precision  Recall * From Table 1, it is also inferred that for a mid- or large-scale
— : system as ours, the performance of simple ML methods is not
Logistic Regression  78.9 78.8 78.9 78.8 d
SVM 81.0 80.6 83.1 80.9 ds good.
ANN 85.0 84.9 84.9 84.9 e The superior performance of GCN as compared to other
GCN 92.1 92.2 914 93.2 baselines reflects that the detection of cascading failures indeed

benefits from adding the spatial information.
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Conclusion & Future Work Sy
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* This work is intended to be an initial study to illustrate the potential of spatial machine learning for
studying cascading failures.

* Data-sets with realistic representation of noise and missing data that are representative of real-life
power systems might improve the robustness of our model.

* Findings of present work could help algorithms like GCNs to predict the occurrence of power system
cascading failures with high RES penetration.

* This in turn serves the higher-level goal of reducing carbon emissions for the current problem.
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Any questions?

tabia.ahmad@strath.ac.uk
yongliz@tamu.edu
panagiotis.papadopoulos@strath.ac.uk
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