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Abstract
Recent progress in self-supervision shows that
pre-training large neural networks on vast
amounts of unsupervised data can lead to impres-
sive increases in generalisation for downstream
tasks. Such models, recently coined as foundation
models, have been transformational to the field of
natural language processing. While similar mod-
els have also been trained on large corpuses of im-
ages, they are not well suited for remote sensing
data. To stimulate the development of foundation
models for Earth monitoring, we propose to de-
velop a new benchmark comprised of a variety of
downstream tasks related to climate change. We
believe that this can lead to substantial improve-
ments in many existing applications and facilitate
the development of new applications. This pro-
posal is also a call for collaboration with the aim
of developing a better evaluation process to mit-
igate potential downsides of foundation models
for Earth monitoring.

1. Introduction
Earth monitoring with machine learning-based methods
plays an increasing role in climate change mitigation and
adaptation as well as climate science (Rolnick et al., 2019).
Applications include methane source detection (Sheng et al.,
2020; Dileep et al., 2020), forest carbon quantification (Lüt-
jens et al., 2019), deforestation monitoring (Finer et al.,
2018; Dao et al.), flood detection (Mateo-Garcia et al.,
2021), extreme weather prediction (McGovern et al., 2017),
wildfire detection (Jain et al., 2020), and crop monitor-
ing (Kerner et al., 2020; Dado et al., 2020). Across many
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of these applications, pre-trained models (e.g., a ResNet
trained on ImageNet) are used to increase generalisation
performance. Improvement of the pre-trained models is
shown to reduce the need for large labelled datasets in some
contexts (Chen et al., 2020) and can improve model gen-
eralisation outside of the training distribution (Hendrycks
et al., 2019). Recent studies exploring the scaling of such
pre-trained models found that increasing the size of an unsu-
pervised (or weakly supervised) dataset as well as properly
scaling the model led to an even greater increase in perfor-
mances under various metrics (Kaplan et al., 2020; Radford
et al., 2021).

While the training of such large-scale models is usually re-
served for industrial research labs with very large computer
clusters, the publication of the pre-trained models opens op-
portunities to the rest of the community. These pre-trained
models were recently coined as foundation models (Bom-
masani et al., 2021) as they might serve as foundations for
sub-fields of machine learning. Specifically, the publica-
tion of large pre-trained models like BERT (Devlin et al.,
2018), and GPT-3 (Brown et al., 2020) led to a paradigm
shift in the field of natural language processing (NLP). This
inspired a similar shift in the field of computer vision with
the release of models like CLIP (Radford et al., 2021) and
DINO (Caron et al., 2021). While CLIP performs well on
various types of vision tasks, it is still under-performing on
Earth monitoring tasks (Radford et al., 2021). This is not
surprising as it is trained mainly on RGB images taken from
a ground perspective, rather than multispectral bands taken
from an overhead perspective prevalent in remote sensing
data. This suggests that there is still untapped potential for
foundation models to benefit the field Earth monitoring as it
has done for NLP and computer vision.

Foundation models also come with downsides. Specifically,
large language models are known to amplify and perpetuate
biases (Bender et al., 2021) and have high CO2e emissions
associated with their training (Strubell et al., 2019; Pat-
terson et al., 2021). Recently, an interdisciplinary group
of researchers published a collective work discussing the
risks and opportunities of foundation models (Bommasani
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et al., 2021). This study highlighted that the relevant stake-
holders are often not well represented during the design of
foundation models. In addition, the increased accessibility
of foundation models can lead to the development of un-
expected applications with potential positive and negative
impacts. To mitigate potential negative impacts, we suggest
an open evaluation procedure early in the process. To this
end, we propose a benchmark dataset and evaluation process
to facilitate the development of foundation models in Earth
monitoring. We will aggregate a collection of downstream
tasks such as classification or semantic segmentation to iden-
tify ground-based features, provide corresponding labelled
datasets, and define a transparent evaluation procedure with
open-source code. To highlight the importance of working
on climate change, benchmark datasets and tasks will fo-
cus on multiple areas related to understanding, mitigating,
and adapting to climate change. The advantages of such a
benchmark are numerous, as they:

• stimulate and facilitate the development of foundation
models for Earth monitoring,

• provide a systematic way of measuring the quality of
models for better scientific progress,

• provide insights into which pre-trained models work
best for specific climate-related tasks, and

• preemptively reduce negative impacts of foundation
models through an appropriate evaluation procedure.

This work is a proposal and a call to action. We ask the com-
munity to engage by proposing suitable datasets, flagging
potential concerns, and proposing modifications to the eval-
uation procedure. In Appendix A, we review the potential
positive and negative societal impacts of this work.

2. Remote sensing data for self-supervision
The development of foundation models does not typically
rely on a specific dataset for the pre-training phase. The
choice of data is part of the design of the model, e.g., a
very large corpus of text from the internet (Mitchell et al.,
2018) or pairs of text associated with images from the web
(Radford et al., 2021). To follow this trend, the data for
training foundation models will not be provided with the
benchmark. Potential sources of data are listed below.

Multispectral with revisits Data sources such as Sen-
tinel 2 (Drusch et al., 2012; ESA, 2021) and Landsat 8
(USGS, 2021) provide images in multiple spectral bands
with periodic revisits. This yields a 4-dimensional array of
structured data (longitude, latitude, wavelength, time) which
can be used to perform various forms of self-supervision,
e.g., predicting adjacent tiles (Jean et al., 2019) or contrast-
ing the different seasons for the same region (Mañas et al.,
2021).

Other sensors Synthetic Aperture Radar (SAR) and ter-

rain elevation are also frequently available and can be
matched to other sources of data through geolocalisation
(Pepin et al., 2020). Such data are complementary to spectral
bands and may encourage the model to learn higher-level
semantic representations.

Semantic data Through georeferencing, text-based data
such as Wikipedia articles can be linked to satellite images
(Uzkent et al., 2019). It is also possible to join content from
non-image data layers like OpenStreetMap (Li et al., 2020).
By predicting or contrasting information from these sources,
the model may learn useful and transferable semantic repre-
sentations.

3. The Benchmark
3.1. Climate Change Downstream Tasks

The aim is to provide a variety of downstream tasks to eval-
uate different aspects of foundation models pre-trained on
other datasets. To go beyond simple image classification,
since it is often not representative of real-world tasks, we
include segmentation, regression, and counting tasks. How-
ever, for the dataset to be useful in this benchmark, several
other criteria need to be met:

Not too big Remote sensing datasets can be comprised of
millions of samples totalling terabytes of data. Benchmark
datasets should be small enough to easily download onto a
personal computer, roughly 100 to a few thousand labelled
samples per task. If the license permits it, the dataset can be
sub-sampled.

Permissive license Most datasets need to be adapted to
fit a conventional machine learning pipeline. In such cases,
a permissive license (e.g., Creative Commons) is required.

Multispectral and SAR One of the main reasons to have
a foundation model tailored to remote sensing is to learn
how to better interpret multispectral and SAR data. To
evaluate their ability to do so, a substantial fraction of the
benchmark datasets must contain multispectral and SAR
data on tasks that can leverage such information.

Meta information for distribution shift evaluation We
also aim to evaluate model performance under distribution
shift, when the model is applied to data from a different
distribution than the training data (Koh et al., 2021). Of
specific interest are downstream tasks in which the training
set and the testing set are in different countries. Other
variables such as date, sun elevation, and spatial resolution
can also provide insightful distribution shift evaluations.

We present current candidate datasets that we are consider-
ing for this benchmark in Appendix Table 1. We encourage
the community to contact us to propose additional datasets.
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Figure 1. Foundation models encapsulate multimodal data streams through self-supervised training. The trained models can then be
fine-tuned for a variety of climate-related remote sensing tasks. Image sources: quantification (Lütjens et al., 2019), detection (Jongaram-
rungruang et al., 2021), generation (Lütjens et al., 2021), counting (Laradji et al., 2020), segmentation (Zantedeschi et al., 2019), and
multi-class classification (Pallai and Wesson, 2017).

3.2. Automatic fine-tuning of the model

To evaluate a pre-trained model, it is common to simply
“probe” the model, i.e., use the learned representations from
the model as the input features to another model (Jean et al.,
2019). However, fine-tuning the model to the given task has
proven to generalize better and is closer to the needs of prac-
titioners (Mañas et al., 2021; Chen et al., 2020). Adapting a
pre-trained architecture to a variety of types of tasks for fine-
tuning comes with significant technical challenges. To this
end, we will provide a GitHub codebase with the necessary
tools to facilitate and standardise the evaluation procedure.
The codebase will provide the following features:

Fine-tuning code To facilitate and standardise fine-
tuning, the benchmark will provide code for adapting popu-
lar architectures such as ResNet (He et al., 2016) and Visual
Transformer (Kolesnikov et al., 2021) to the supported types
of task such as classification, segmentation and detection.

Fine-tuning API When the pre-trained network is not
compatible with existing fine-tuning methods, we encourage
the users to submit a pull request to grow the library.

Evaluation of representations Often called probing,
this approach does not require fine-tuning. The pre-trained
model encode every images of all tasks and predictions are
made from the fixed features. This approach requires less
computations and is less likely to have compatibility issues.

3.3. Evaluation Metrics

We propose to include a variety of metrics to enable rigorous
evaluation of the pre-trained models:

Task-specific metrics We propose to report a few metrics
that are natural to each task being evaluated, e.g., F1 for
classification tasks and mIoU for semantic segmentation.

Aggregated metric For a valid comparison of a pre-
trained model across multiple tasks, we will use the pairwise
sign test (Lacoste et al., 2012). This simply counts the num-

ber of times one model outperforms a baseline and assesses
if the difference is significant. When a few strong baselines
are compared, Friedman’s test (Friedman, 1937) can be used
to provide a more powerful test.

Distribution shift As specified in Section 3.1, we are
collecting metadata for distribution shift evaluation. This
is done by partitioning the train, validation, and test sets of
each dataset based on specific values of a selected metadata
variable such as country or date. Each partition yields a
different evaluation with potentially different insights.

Energy efficiency and CO2 equivalent emissions We
will also report energy consumption, and tCO2e emissions
during the benchmarking phase for each model(Lacoste
et al., 2019; Schmidt et al., 2021). These emissions are
expected to be significantly smaller than that of the pre-
training phase, which we do not have access. However, this
evaluation will provide a good comparison, highlighting
which model is more energy efficient.

4. Conclusion
We propose to develop a new benchmark for evaluating foun-
dation models on climate change downstream tasks. This
involves adapting a variety of remote sensing datasets to a
more conventional machine learning pipeline and providing
code for fine-tuning and evaluating on individual tasks. We
expect that this benchmark will stimulate the development
of new foundation models that could lead to better generali-
sation on a variety of climate-related downstream tasks and
could open up opportunities for new applications.

This proposal is also a call for collaboration. We hope
to receive recommendations to include additional public
datasets as well as datasets that have not yet been released.
We also welcome any recommendations about the evaluation
procedure that could improve the validation of foundation
models for Earth monitoring and mitigate their potential
downsides.
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A. Societal Impact of Foundation Models for
Earth Monitoring

Remote sensing and Earth monitoring have been transfor-
mational in the past decades. Applications include military,
insurance, market forecasting, climate science, and more.
Much of this impact is not directly attributed to deep learn-
ing nor large pre-trained networks and its review extends
beyond the scope of this section. In this section, our focus
is on the impact of bringing foundation models to Earth
monitoring.

A.1. Climate mitigation and adaptation

Machine learning on remote sensing data is widely used
to develop solutions for a variety of problems relevant to
climate change (Burke et al., 2021; Rolnick et al., 2019;
Zhu et al., 2017; Ma et al., 2019). The vast majority of
these solutions are built by curating datasets for a specific
task and require significant resources to develop. Further-
more, the solutions are often tailored to specific regions as
extending approaches to new geographies remains a signif-
icant challenge, primarily due to the lack of labeled data
(Zhu et al., 2017). Less-economically developed regions of
the world are no less susceptible to the impacts of climate
change, yet suffer from the lack of effective remote sensing-
based solutions (Burke et al., 2021). Foundation models
for Earth monitoring have the potential to address many
of these issues and substantially accelerate and enable the
development of new remote sensing solutions for climate
change.

A.2. Increased accessibility

Reducing the need for curating a large labeled dataset for
each task could democratize access to the development of
machine learning models for remote sensing, specifically
for groups or organisations with limited budgets (Maskey
et al., 2020a; Alemohammad, 2021). In particular, founda-
tion models may especially benefit non-profit organisations,
academic universities, startups, and developing countries. It
may also open opportunities for applications that were not
previously profitable. Although we believe that increased
accessibility to these models will have a largely net positive
impact, we acknowledge that this accessibility may lead to
unexpected applications with potentially negative impacts
(Bommasani et al., 2021). We also note that such models
may have dual-use applications, where, for example, they
may help oil and gas industries in their operations in ways
that increase (or reduce) overall emissions.

A.3. Emissions of large pre-trained models

Recent work has investigated emissions of large neural
networks (Strubell et al., 2019; Schwartz et al., 2020;

Schmidt et al., 2021; Lacoste et al., 2019; Patterson et al.,
2021). Specifically, training a large transformer can emit
284 tCO2e when trained on computers using largely fossil
fuel energy (US national average) (Strubell et al., 2019).
When put in perspective with individual actions, such emis-
sions are large—e.g., a roundtrip passenger flight from San
Francisco to London is 2.8 tCO2e , about 100× smaller.
However, the extensive reusability of pre-trained models
and their potential for helping efforts to mitigate climate
change (Rolnick et al., 2019) calls for a different perspec-
tive.

When evaluating new tools and systems, it is important to
consider the likely net impact on emissions of both the cre-
ation and testing of the tool and its eventual deployment. For
example, evaluating the performance of airborne methane
sensing tools at emission levels commonly found in oil and
gas operations can emit about 7 metric tonnes of methane,
roughly 600 tCO2e equivalent using a 20-year global warm-
ing potential (EPA, 2017). However, in a single day of flying,
such a single instrument can survey hundreds of sites, of-
ten identifying leaks for repair that emit well over 7 metric
tonnes of methane per day (Johnson et al., 2021). Similarly,
foundation models may significantly advance our ability to
leverage enormous quantities of passively collected satellite
data to massively reduce emissions, qualitatively advance
our understanding of climate science, or improve our ability
to adapt to climate change.

In sum, the potential benefits for climate change mitigation
with improved Earth monitoring methods likely outweigh
the emissions associated with foundational models. More-
over, various actions can be taken to reduce and mitigate
emissions related to the training of your model (Lacoste
et al., 2019):

• Select data centers that are certified carbon neutral or
largely powered by renewable energy, with good power
usage effectiveness (PUE). Such measures can reduce
emissions dramatically 50× reduction in emissions
(Lacoste et al., 2019).

• Design your code development pipeline to minimize
the number of computationally-intensive runs required,
e.g. employ modular development and testing when
possible.

• Make your code more efficient and sparsify your net-
work when possible (Patterson et al., 2021). This can
reduce emissions up to 10-fold.

• Favour more energy-efficient hardware, e.g., TPUs or
GPUs.

• Monitor (Schmidt et al., 2021) and report your emis-
sions (Lacoste et al., 2019). Better communication
about climate change is fundamental for systemic
changes. Better documentation will help other coders
pick up where you left off, potentially bypassing some
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computationally intensive runs.
• Offset the cumulative emissions of your projects.

A.4. Fairness and biases

Large language models are known to amplify and perpetuate
biases (Bender et al., 2021). While this can lead to serious
societal issues, we believe that biases in remote sensing
models are likely to have much less impact. We do however
anticipate potential biases and fairness issues.

Data coverage and resolution Some satellites cover the
whole Earth with standard spatial resolution and revisit rate
(e.g., Sentinel-2 covers the whole Earth at 10-60 m/pixel res-
olution every 5 days). This makes imagery freely available
uniformly across the planet. Other satellite data providers
such as Maxar acquire images on-demand and have higher
spatial resolution (up to 0.3m per pixel), but also have lower
revisit rates and high costs. Some countries, such as New
Zealand, freely provide aerial imagery with resolution up to
0.1m per pixel1. Finally, it is worth noting that cloudy sea-
sons in some climates may limit data availability for some
countries. Overall, while the coverage is fairly uniform,
some regions have much higher coverage than others and
money can be a limiting factor to access the data. This can
lead to some level of biases and fairness issues.

B. List of Downstream Tasks

1https://data.linz.govt.nz/

https://data.linz.govt.nz/
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[h]

Name Task Sector # labels Resolution Spectral bands

AgricultureVision
(Chiu et al., 2020)

Multi-class classification or
segmentation of agricultural

patterns important to
farmers (e.g., planter

skip or nutrient deficiency)
in aerial images.

Agriculture 94,986 10cm
RGB +

near infrared

AquaSat
(Ross et al., 2019)

Per-pixel regression to
predict water quality
(e.g., total suspended

sediments) in
satellite images.

Water quality 600,000 30m
Multispectral

+ RGB

CalMethane Survey
(Duren et al., 2019)

Methane plume
classification Energy 60-1000 3m Hyperspectral

CUMULO
(Zantedeschi et al., 2019)

Detecting clouds to
reduce uncertainties in

climate models
Climate 300,000 1km

Hyperspectral
(36-band)

LandCoverNet
(Alemohammad and Booth, 2020)

Segmentation via multispectral
satellite imagery with

annual land cover
class per pixel

Land use 2̃,000 10m Multispectral

SEN12-FLOOD
(Rambour et al., 2020)

Image classification
of multispectral and

radar satellite imagery
to identify flooded regions

Climate/
Adaptation 5,567 10m

Multispectral
+SAR

Tropical cyclone wind speed
(Maskey et al., 2020b)

Regression-based estimation
of surface wind speed
of tropical cyclones

using satellite imagery

Climate 114,634 4km
Single-band
microwave

3D PV Locator
(Rausch et al., 2020)

Classification and
segmentation of solar

panels in satellite
imagery

Energy 100,000 10cm RGB

Table 1. Example datasets for benchmarking climate-focused Erath monitoring foundation models. All listed datasets satisfy the criteria
presented in Section 3.1

http://registry.mlhub.earth/
https://github.com/GlobalHydrologyLab/AquaSat
http://registry.mlhub.earth/10.14279/depositonce-10149/
https://github.com/FrontierDevelopmentLab/CUMULO
http://registry.mlhub.earth/10.34911/rdnt.d2ce8i/
https://mediatum.ub.tum.de/1483140
http://registry.mlhub.earth/10.34911/rdnt.xs53up/
https://github.com/kdmayer/3D-PV-Locator

