Multi-agent reinforcement learning for renewable
integration in the electric power grid

Vincent Mai Tianyu Zhang Antoine Lesage-Landry
Université de Montréal & Mila Polytechnique Montréal & GERAD
Montréal, Canada 2500 de Polytechnique road
vincent.mai@umontreal.ca Montréal, Canada, H3T 1J4
tianyu.zhang@mila.quebec antoine.lesage-landry@polymtl.ca
Abstract

As part of the fight against climate change, the electric power system is transitioning
from fuel-burning generators to renewable sources of power like wind and solar.
To allow for the grid to rely heavily on renewables, important operational changes
must be done. For example, novel approaches for frequency regulation, i.e., for
balancing in real-time demand and generation, are required to ensure the stability
of a renewable electric system. Demand response programs in which loads adjust
in part their power consumption for the grid’s benefit, can be used to provide
frequency regulation. In this proposal, we present and motivate a collaborative
multi-agent reinforcement learning approach to meet the algorithmic requirements
for providing real-time power balancing with demand response.

1 Introduction

Climate change mitigation brings about important transformations in the electric power system. In
2019, the United States (U.S.) Environmental Protection Agency (EPA) reported that 25% of the
country’s greenhouse gas emission came from electricity generation [2]. The EPA further noted that
62% of the U.S. electricity was generated from burning fossil fuel [1]. In an effort to cut down and
ultimately eliminate greenhouse gas emissions produced by the electricity sector, the power grid is
moving from a conventional, fuel-burning to a renewable, natural phenomenon-based generation,
e.g., wind turbine and solar photovoltaics. Apart from the immediate financial consequence of
deploying new generators, electric grid operations must undergo an important paradigm shift as
future energy systems will rely on uncertain, fast-ramping, and intermittent sources of power, i.e.,
renewables [27, |6]. Without a renewed way of operating the power grid, the transition toward a
renewable energy grid is hardly conceivable. Specifically, to ensure the stability of the electric grid,
a near-perfect balance between the power demand and generation is critical [[14]. Hence, trading a
constant, deterministic generation for an intermittent, uncertain one — the now renewable generation —
imposes operational challenges to system operators as the need for power balancing is exacerbated.
At the second timescale, this balancing task is referred to as frequency regulation [6} 27] because a
grid frequency at its nominal value, viz. 60 Hz in North America and 50 Hz in Europe, indicates a
balanced load-generation [14]].

1.1 Demand response for renewable integration

Demand response [26 20, 25]] (DR) of flexible loads is a greenhouse gas emission-free, and renewable
alternative to provide frequency regulation services [7, 27] and hence to cope with renewable
intermittency instead of relying, for example, on conventional power plants [22} [21]] or expansive
battery energy storage [11} 9, 34]]. DR refers to programs in which loads, e.g. residential households,
modulate their non-critical power consumption following an aggregator’s or system operator’s
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instructions (e.g., turning on or off air conditioning units) or signals (e.g., increasing/decreasing
electricity rates). For example, this can represent a house that accepts to have its air conditioning unit
be turned OFF and ON successively to track the output of a wind turbine as long as its temperature
is within an acceptable range, e.g., between 20°C and 22°C. Loads constrained by temperature
requirements are referred to as thermostatically controlled loads (TCLs). DR is an attractive prospect
for power balancing because of its fast response and of its low deployment required investments [27]].
Fast timescale DR like frequency regulation requires algorithmic approaches that provide actions
within a few seconds or less. These actions must account for the dynamic behavior of the controllable
loads and the uncertainty of both the environment, e.g. changing weather, and the loads, e.g. erratic
costumer behavior. Moreover, DR requires a large number of loads to provide a sustained level of
controllable power and hence to be able to track regulation setpoints, i.e. the power imbalances.
Frequency regulation DR is, therefore, intrinsically a cooperative multi-agent problem.

1.2 Motivation for a machine learning-based approach

In sum, four critical design aspects impose tough constraints on the algorithmic design of frequency
regulation DR: (i) adaptivity under uncertainty, (ii) computational efficiency for real-time decision-
making, (iii) sequential decision-making for dynamic environments, and (iv) scalability to and
cooperativity in multi-agent settings. Several frameworks have been considered for this problem but
were all insufficiently addressing at least one aspect. For example, model predictive control (MPC)
approaches [13 [18} [17] integrate the sequential decision-making component of the problem and
adequately model system dynamics but are subject to an important computational burden due to the
receding horizon formulation. The resulting is, therefore, not suitable for real-time implementation.
Online optimization approaches [15, [16] address this issue; they offer very efficient algorithms to
deploy DR resources in real-time but they are mostly greedy, i.e., they do not account for the system’s
dynamics. Finally, the multi-agent aspect of the problem renders dynamic programming-based [3]]
and standard reinforcement learning-based [23]] approaches intractable.

In this work, we propose to implement a multi-agent reinforcement learning (MARL) method, namely
multi-agent PPO [33]], to coordinate the power consumption of residential households equipped
with an air conditioning unit. Our approach accounts for all critical design aspects to provide high-
performance frequency regulation using demand response of TCLs. Specifically, the policy-based
implementation tackles the two first aspects as (i) the policy adapts to the current problem’s state,
i.e., no static trajectory is computed a priori, thus providing adaptivity under uncertainty, and (ii) the
policy only requires a straightforward evaluation to provide an action, i.e., no multi-period problem
needs to be solved in each round, hence allowing real-time decision-making. The Bellman equation
used in reinforcement learning inherently accounts for (iii) the dynamics of the environment. Finally,
the (iv) scalability is made possible via the centralized training and decentralized execution (CT-DE)
framework, which allows to add a new TCL in the network as a new instance of the agent, without
additional training. Additionally, networked or aggregated communications allow to add a new TCL
without any change to the other agents, or any additional computing burden except for the new agent.

Our expected contributions are:

» We propose a frequency regulation demand response method based on multi-agent reinforce-
ment learning, namely multi-agent PPO [33]]. Our approach is, to the authors’ knowledge,
the only one that addresses all identified algorithmic requirements for frequency regulation.

* We build a thermostatically controlled load coordination Gym environment based on the
second-order thermal model from [} [12]. The environment together with our approach is to
be made readily available to the community for (i) collaborative multi-agent reinforcement
learning algorithmic development and (ii) for evaluating the performance of demand response
methods. Frequency regulation demand response is a timely problem, but also presents
interesting challenges which are of interest for the machine learning community.

2 Demand response as a multi-agent reinforcement learning problem

To train and test our multi-agent algorithm, we are developing a simulator based on the Ray frame-
work [19]], and compatible with OpenAI Gym.



We consider a system 7 of controllable TCLs, each of them controlled by a different agent A,.
Each TCL i € 7 has unique characteristics: air conditioner’s power consumption and coefficient of
performance, etc. — and is simulated in a building with its own unique thermal properties.

On the simulator side, at each time step, a second-order thermal model [[12], inspired from GridLAB-
D [8l], is used to update the state of each house. This is based on the previous state, the actions of the
agents, and some random elements modelling, for example, an user opening a window. The variation
in the grid’s power generation and the change in outdoors temperature are also modelled.

On the agent side, each agent A; observes a unique state X, ;, takes an action a; ;, and receives a
reward r; ;. The state X ; contains: (1) the indoor temperature for TCL ¢ as well as the temperature
preference bounds set by the TCL user, (2) the status (ON or OFF) of its cooling unit, its power
consumption, and its remaining lock-out time, (3) the calendar date, time, outdoors temperature, and
optionally weather predictions, (4) the regulation signal common to all TCLs, (5) the unique thermal
and power parameters of TCL ¢, and (6) the information communicated by other TCLs in the network
as to coordinate the aggregation’s response. For each agent A;, the possible action at time ¢ is to
change the current status of the TCL cooling unit: if a; , = 1, TCL ¢ switches ON of OFF. Otherwise,
if a; 4 = 0, it keeps its current status. To protect the hardware, a lockout constraint is enforced: after
at; = 1, the TCL must wait a given amount of time before having access to a; ; = 1 again [35} 30].
The negative reward is a combination of two penalties representing a dual objective: (1) every single
agent must satisfy its indoors temperature constraints, which is regulated proportionally to the square
distance between the current indoor temperature and the closest limit when the indoor temperature is
outside an accepted range around a desired temperature, and (2) the combined power consumption
of all agents at the point of connection with the grid should track the regulation signal: all agents
are penalized based on the square distance between these two quantities. To collaborate, the agents
can communicate their current status, temperature, constraints, and thermal and power properties.
For scalability and privacy concerns, we will also experiment with networked communication, i.e.
communicating locally with the 2n direct neighbours, for example A;_,, to A;,, so that the resulting
graph stays fully connected. Another interesting option to explore is aggregated data — through a
human-designed pipeline or a learned latent space.

3 MARL proposed method

Collaborative MARL is a challenging task. Common challenges are the non-stationarity of the
environment as all agents learn simultaneously, its partial observability for a given agent which may
not be aware of the reality of other agents, and the necessity for the agents to learn to communicate
and to coordinate [[10].

As a first step, we would train a DQN with CT-DE [28]. We will then experiment with more
complex, dedicated MARL methods. For example, we propose to implement multi-agent PPO
(MAPPO) [33] also with CT-DE, as it has shown great performance in cooperative MARL benchmarks
like StarcraftIl [24} |29] and Hanabi [5]. Additionally, we will test the role encoder-decoder from
ROMA [31] and the role action space from RODE [32]], as they reduce primitive action-observation
spaces by clustering agents’ roles. This will enhance both efficiency and policy generation.

Finally, having multiple instances of the same agent with different individual goals can be formulated
as a single agent multi-goal problem, enabling the use of Hindsight Experience Replay [4].

4 Conclusion

Multi-agent demand response is a promising answer to the problem of frequency regulation, which
appears in the context of the transition of energy generation means from fossil fuel to renewable
sources. We propose to tackle this problem using multi-agent reinforcement learning methods, such
as MAPPO with CT-DE, which can cope with the uncertain and dynamic environment, and can be
deployed in a scalable way for real-time decision-making. To test and train our method, we are
developing a simulator which will be made publicly available.

Once these algorithms are confirmed to work in a simulator, the next step in the deployment of such
methods will be to work on multi-agent sim-2-real transfer where the policies trained in simulator are
applied to real TCLs, in real buildings.



Acknowledgements

This work was funded by the Institute for Data Valorization (IVADO), by the National Sciences and
Engineering Research Council of Canada, as well as Microsoft and Samsung.

References

[1] U.S. Energy Information Administration. Electricity explained - electricity in the united states.
[2] U.S. Environmental Protection Agency. Sources of greenhouse gas emissions.

[3] Maria Alejandra Zuniga Alvarez, Kodjo Agbossou, Alben Cardenas, Sousso Kelouwani, and
Loic Boulon. Demand response strategy applied to residential electric water heaters using
dynamic programming and k-means clustering. IEEE Transactions on Sustainable Energy,
11(1):524-533, 2019.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay,
2018.

[5] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl
Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

[6] Hassan Bevrani, Arindam Ghosh, and Gerard Ledwich. Renewable energy sources and fre-
quency regulation: survey and new perspectives. IET Renewable Power Generation, 4(5):438—
457, 2010.

[7] Duncan S Callaway. Tapping the energy storage potential in electric loads to deliver load
following and regulation, with application to wind energy. Energy Conversion and Management,
50(5):1389-1400, 20009.

[8] David P. Chassin, Jason C. Fuller, and Ned Djilali. Gridlab-d: An agent-based simulation
framework for smart grids. Journal of Applied Mathematics, 2014:1-12, 2014.

[9] AB Gallo, JR Simdes-Moreira, HKM Costa, MM Santos, and E Moutinho Dos Santos. Energy
storage in the energy transition context: A technology review. Renewable and sustainable
energy reviews, 65:800-822, 2016.

[10] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, Apr 2021.

[11] Cody A Hill, Matthew Clayton Such, Dongmei Chen, Juan Gonzalez, and W Mack Grady.
Battery energy storage for enabling integration of distributed solar power generation. /EEE
Transactions on smart grid, 3(2):850-857, 2012.

[12] Betelle Memorial Institute. Gridlab-d wiki. http://gridlab-d.shoutwiki.com/wiki/
Main_Page.

[13] Stephan Koch, Johanna L Mathieu, Duncan S Callaway, et al. Modeling and control of
aggregated heterogeneous thermostatically controlled loads for ancillary services. In Proc.
PSCC, pages 1-7. Citeseer, 2011.

[14] Prabha Kundur. Power system stability. Power system stability and control, pages 7—1, 2007.

[15] Antoine Lesage-Landry and Joshua A Taylor. Setpoint tracking with partially observed loads.
IEEE Transactions on Power Systems, 33(5):5615-5627, 2018.

[16] Antoine Lesage-Landry, Joshua A Taylor, and Duncan S Callaway. Online convex optimization
with binary constraints. /[EEE Transactions on Automatic Control, 2021.

[17] Mingxi Liu and Yang Shi. Model predictive control of aggregated heterogeneous second-order
thermostatically controlled loads for ancillary services. IEEE transactions on power systems,
31(3):1963-1971, 2015.

[18] Mehdi Maasoumy, Borhan M Sanandaji, Alberto Sangiovanni-Vincentelli, and Kameshwar
Poolla. Model predictive control of regulation services from commercial buildings to the smart
grid. In 2014 American Control Conference, pages 2226-2233. IEEE, 2014.


http://gridlab-d.shoutwiki.com/wiki/Main_Page
http://gridlab-d.shoutwiki.com/wiki/Main_Page

[19] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and et al. Ray: A
distributed framework for emerging ai applications. arXiv:1712.05889 [cs, stat], Sep 2018.
arXiv: 1712.05889.

[20] Peter Palensky and Dietmar Dietrich. Demand side management: Demand response, intelligent
energy systems, and smart loads. IEEE transactions on industrial informatics, 7(3):381-388,
2011.

[21] Eric Pareis and Eric Hittinger. Emissions effects of energy storage for frequency regulation:
Comparing battery and flywheel storage to natural gas. Energies, 14(3):549, 2021.

[22] David Appleyard GE Power. What every generation executive should know about the impact of
ancillary services on plant economics.

[23] Frederik Ruelens, Bert J Claessens, Stijn Vandael, Bart De Schutter, Robert Babuska, and
Ronnie Belmans. Residential demand response of thermostatically controlled loads using batch
reinforcement learning. IEEE Transactions on Smart Grid, 8(5):2149-2159, 2016.

[24] Mikayel Samvelyan, Tabish Rashid, Christian Schroder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019.

[25] Pierluigi Siano. Demand response and smart grids—a survey. Renewable and sustainable
energy reviews, 30:461-478, 2014.

[26] Goran Strbac. Demand side management: Benefits and challenges. Energy policy, 36(12):4419—
4426, 2008.

[27] Josh A Taylor, Sairaj V Dhople, and Duncan S Callaway. Power systems without fuel. Renewable
and Sustainable Energy Reviews, 57:1322—-1336, 2016.

[28] Justin K. Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, Benjamin Black, and Dinesh
Manocha. Parameter sharing is surprisingly useful for multi-agent deep reinforcement learning.
CoRR, abs/2005.13625, 2020.

[29] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Kiittler, John P. Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. CoRR, abs/1708.04782, 2017.

[30] Evangelos Vrettos, Charalampos Ziras, and Goran Andersson. Fast and reliable primary
frequency reserves from refrigerators with decentralized stochastic control. IEEE Transactions
on Power Systems, 32(4):2924-2941, 2016.

[31] Tonghan Wang, Heng Dong, Victor R. Lesser, and Chongjie Zhang. ROMA: multi-agent
reinforcement learning with emergent roles. CoRR, abs/2003.08039, 2020.

[32] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
RODE: learning roles to decompose multi-agent tasks. CoRR, abs/2010.01523, 2020.

[33] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games, 2021.

[34] Behnam Zakeri and Sanna Syri. Electrical energy storage systems: A comparative life cycle
cost analysis. Renewable and sustainable energy reviews, 42:569-596, 2015.

[35] Wei Zhang, Jianming Lian, Chin-Yao Chang, and Karanjit Kalsi. Aggregated modeling and
control of air conditioning loads for demand response. IEEE transactions on power systems,
28(4):4655-4664, 2013.



	Introduction
	Demand response for renewable integration
	Motivation for a machine learning-based approach

	Demand response as a multi-agent reinforcement learning problem
	MARL proposed method
	Conclusion

