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Abstract

Climate models form the basis of a vast portion
of earth system research, and inform our climate
policy. Due to the complex nature of our climate
system, and the approximations which must nec-
essarily be made in simulating it, these climate
models may not perfectly match observations. For
further research, these outputs must be bias cor-
rected against observations, but current methods
of debiasing do not take into account spatial cor-
relations. We evaluate unsupervised image-to-
image translation networks, specifically the UNIT
model architecture, for their ability to produce
more spatially realistic debiasing than the stan-
dard techniques used in the climate community.

1. Introduction

The vast majority of research on the physical earth sys-
tem is reliant on the use of general circulation models
(GCMs). These are numerical simulators which evolve an
ocean and/or atmospheric state forward in time according
to analytically-derived equations (Washington & Parkin-
son, 2005). Through the work of the International Panel
on Climate Change (IPCC), these GCMs have been cen-
tral to informing policymakers about climate change (IPCC,
2013).

There are a multiplicity of different GCMs, developed by
research centres across the world. The latest Climate Model
Intercomparison Project (CMIP6) (Eyring et al., 2016) in-
cludes output from tens of GCMs. These GCMs must dis-
cretise the earth in order to simulate it, and no matter how
fine-grained the simulation, there will always be unresolved
physical processes. These must be approximated, and differ-
ent GCMs use different parameterisations to do so. Because
our climate is highly chaotic, these different parameterisa-
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tions can lead to detectable differences in the GCMs’ outputs
(Wang et al., 2014; Mabher et al., 2018).

These differences are important, as the simulations are
increasingly used to assess the risks associated with ex-
treme weather events, such as droughts, heatwaves and
storms. To quantify these risks, researchers must decide
which GCM(s) to use. This is a non-trivial choice, as it
can cause quantitative and qualitative differences on these
risks (e.g. (Kirchmeier-Young et al., 2017; Herger et al.,
2018)). Further, the biases of each GCM vary by variable
and geographical location (Ridder et al., 2021). This makes
compound risks (Leonard et al., 2014), like simultaneous
hot-dry events, even harder to assess, as they involve mul-
tiple variables and possibly multiple geographical areas.
Simultaneous crop failure in multiple regions of high agri-
cultural output (Gaupp et al., 2020) is an important risk
which may be particularly affected.

GCMs are improving, but will never be perfect. They can
be made more useful through bias correction with respect
to observations of the real climate (Bellprat et al., 2019).
The standard method used is quantile mapping (QM) (Can-
non et al., 2015). This is a simple method where a single
value of a variable z obtained from the GCM at a spatial
location 6, is converted into a percentile using the estimated
cumulative distribution function Fgcps. Then an equiva-
lent observation value %, is obtained using the inverse
cumulative distribution function F,; ..

Fobs = Fopl(Faonm (@acnr; 0);0) (1)

This approach is limited, as it does not capture conditional
relationships. The QM predicted value of Z,,s does not
use the values of z¢ ¢ in neighbouring locations in space.
This means, for example, if some weather event in a GCM
has a different characteristic shape than in observations, then
QM cannot reshape it coherently. This could be the size and
shape of a cyclone, or the position of storms along the polar
front.

Further, QM does not use the values of other variables at the
same spatial location. So relationships between variables
are severed and may become physically unrealistic. For
example, if QM transforms a dry day in the GCM to a
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Figure 1: An example HadGEM3 precipitation field from a single day and its translations via UNIT and QM. The forth root of precipitation

(mm day ") is shown.

wet day in equivalent observations, it may not have the
associated cooling effect of precipitation.

Previous work has attempted to solve some of these issues,
but incompletely. In (Levy et al., 2013) the authors propose
stretching simulated precipitation fields to match precipita-
tion patterns in observations. This was for monthly average
precipitation, and the technique does not allow the use of
daily data which is important for studying extreme event
risks. Floods and fires happen on a timescale of days, not
months. It also cannot easily be extended to multiple vari-
ables. In (Cannon, 2018) the authors propose a way to
generalise QM to N-dimensions. This allows the user to
transform multiple variables in multiple spatial locations
using daily data. However, as they note, their method cannot
be extended to many spatial points in many variables before
it becomes computationally limited, and becomes prone to
overfitting.

In this work we explore the use of unsupervised image-
to-image translation networks, particularly the UNIT ar-
chitecture (Liu et al., 2017), to map between GCMs and
observations.

2. Unpaired image-to-image translation

Unsupervised image-to-image translation networks such as
UNIT (Liu et al., 2017) and CycleGAN (Zhu et al., 2017)
are designed to map between images {x;};*, and {y;}},
in the absence of any information about which image x;
corresponds to which image y;. This makes the problem
distinct from image-to-image translation (e.g. (Isola et al.,
2017)) where image pairs {z;,y; }, are available.

In order to map between two GCMs, or a GCM and obser-
vations, the ability to translate without pairs is absolutely
necessary. Even if two GCMs were initialised with the exact
same climate state 1o = ¥ x(0) = 1y (0), when we run
them forward in time there will be no correspondence be-
tween ¢ x (t) and ¢y (t) after only a short time ¢ > 7, due
to the chaotic dynamics of the earth system. This is also
true between a GCM and observations. The time scale over
which a GCM accurately predict the weather 7, is approxi-
mately 2 weeks (Lorenz, 1969; Zhang et al., 2019). This is a

blink of an eye on time scales of climate, as our simulations
often last tens or hundreds of years. But to assess risks, we
need to know that the daily weather data generated by these
simulations is representative of our the real climate system.

It is also not valid to train a mapping using pairs collected
at times ¢ < 7, like recent debiasing for weather forecasts
(Steininger et al., 2020) have done, and assume that this
short time-range mapping can be applied to a long simu-
lation. The observed initial climate state 1)y may be an
unrealistic state for the free-running GCM, and after some
time, the simulated climate state may drift (Gupta et al.,
2013) and never revisit states similar to those where training
examples were collected. So using the trained mapping
would be predicting outside of the training data.

2.1. Unsupervised image-to-image translations
networks

Unsupervised image-to-image translations networks are
based on the architecture of generative adversarial networks
(GANSs) (Goodfellow et al., 2014). They are composed of
two conditional generators which carry out mappings be-
tween the two domains, Gy : X - Y andGx : Y — X.
Gy tries to generate images Gy () which are consistent
with the domain Y, and has an accompanying adversarial
discriminator Dy which aims to detect the fake images cre-
ated by Gy. Gx is similar and has an adversary Dx. The
GAN loss associated with one of these mappings is

L(Gy,Dy,X,Y) =Ey.y[log Dy (y)]

+E,xllog(l— Dy ()] @
L(Gx,Dx,Y, X) is similar. It is also necessary that the
mappings show cycle consistency, so that Gx (Gy (z)) ~ x
and Gy (Gx (y)) = y. This ensures that the network learns
a coherent two-way translation. The total loss function

includes a penalty associated with this comparison. We use
L1 loss here.

These networks have been shown to translate between pho-
tos of horses and zebras; and between simulated city driving
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Figure 2: Mean precipitation (mm day ') during monsoon season (June-September) for the ERA5, and HadGEM3 datasets and the UNIT

translation of the HadGEM3 data.

scenes and real city driving scenes. This last use case is
most similar to our purpose here. We note also that in (Shri-
vastava et al., 2017) the authors train a related refiner model
to make simulated eye poses more realistic.

3. Methods

We use GCM data from the Climate of the 20th Century Plus
(C20C+) Project (Folland et al., 2014), particularly from the
HadGEM3-A-N216 GCM (Ciavarella et al., 2018) run un-
der a historical recreation scenario. In this dataset the ocean
temperatures are prescribed.! We also use ERAS reanalysis
data (Hersbach et al., 2020) as a stand-in for perfect obser-
vations. These data are daily global gridded fields which
appear like multichannel images, where the channels are
2-metre mean, minimum, and maximum temperature; daily
accumulated precipitation; and z500 geopotential height.

We train a UNIT neural network to perform a mapping
between the datasets in the geographical region bounded by
8°S-30°N 44°E-121°E. This region of study was chosen
to capture the South Asian monsoon. More details on the
networks can be found in the appendix and source paper
(Liu et al., 2017).

4. Results

Figure 1 shows an example day of precipitation sampled
during the South Asian summer monsoon. The top row of
the figure shows the sample from the HadGEM3 dataset,
and its mapping onto the ERAS dataset using the UNIT

'"The GCM is run in a mode where the sea surface tempera-
tures are forced to set values at given times - i.e. they are treated
as boundary conditions. Meanwhile the atmosphere may freely
evolve.

network and QM.

A striking feature of this example is crook-shaped rain sys-
tem over the Indian Ocean in panel (a). Weather systems
similar to this example are common in the HadGEM3 data,
but do not occur in the ERAS data. The UNIT transform of
this example removes this system, whilst quantile mapping
only morphs its intensity, but does not remove its spatial
structure. This leaves a precipitation signal which is physi-
cally implausible.

The South Asian monsoon is crucial to the region, so reliable
bias correction is likewise imperative. This weather system
is a common bias across GCMs (Bollasina & Ming, 2013;
Ashfaq et al., 2017), and does not occur in observations.
Figure 2 shows how this weather system impacts the mean
monsoon precipitation over the region. The figure shows
that the UNIT translation removes the spatial structure of
the mean bias. It increases precipitation over the Indian
subcontinent, and reduces it in the Indian Ocean. Note that
UNIT achieves this mean correction whilst being trained
only to map individual days. This is unlike QM which
explicitly maps the entire univariate distributions. QM is not
shown in figure 2 as it would, by definition, have the same
mean precipitation as the target ERAS dataset. However,
as shown in figure 1, the daily QM fields can be left with
unphysical structures. We must then ask, how are we to trust
the aggregate when the individual days seem nonsensical?

It is a fiendish task to determine whether any presented
weather field is realistic. We therefore cannot use the same
human verification as used in other work (e.g. (Salimans
et al., 2016)) to find an aggregate score of how realistic the
fields are. Neither can we train an off-the-shelf classifier to
verify whether our generated images contain useful features
as in (Isola et al., 2017). In order to estimate how realis-
tic the translated fields are, we take each translated field
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Figure 3: Distributions of the maximum SSIM score between each

daily data sample from {HadGEM3, UNIT translated HadGEM3,

QM translated HadGEM3} and all samples from the ERAS dataset.
The data used are the forth root of precipitation (mm day ).
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Figure 4: Joint distributions between temperature (K) and the 4th
root of precipitation (mm day ~!). These data are sampled from a
single spatial location in the southern tip of India (box centred at
8.6°N 77.9°E with longitudinal width 0.83° and latitudinal height
0.56°). In the figure, the points are the measurements on individual
days. The contours are an estimate of the distribution via kernel
density estimation. These distributions are shown for the UNIT
translation of the HadGEM3 data to ERAS, the equivalent QM
translation, the original ERAS data, and the original HadGEM3
data.

and find the maximum structural similarity index measure
(SSIM) (Wang et al., 2004) score between it and all sam-
ples of the target ERAS dataset. In figure 3, we plot the
distribution of these scores for the HadGEM3 data, and its
UNIT, and QM translations. Here, the SSIM was calculated
between the forth root of the precipitation fields. The forth
root was used due to the extreme skew of the precipitation
values. The figure shows that The UNIT translation pro-
duced fields that were more structurally similar to the ERAS
dataset than QM. This supports the example shown in figure

1 where QM introduces unphysical spatial structures.

Finally, we compare a sample of cross-variable correla-
tions. Figure 4 shows the joint distribution between the
temperature and precipitation from a single grid-point at the
southern tip of India, for the original datasets and the transla-
tions. The ERAS data appears to have two notable peaks in
the joint distribution, and a strong conditional dependence
between the temperature and precipitation at higher precipi-
tation values. The QM translation smears out the features
of the joint distribution, whilst the UNIT translation per-
haps enhances these features too much, with less values on
the perimeter of the distribution than should be the case.
As the UNIT network has an adversarial component, this
enhancement may be be a form of boundary distortion, as
is common in generative adversarial networks (Santurkar
et al., 2018). We also note that the dry bias, as shown in
figure 2, was due to the same reduction in the high end of
the precipitation distributions at each point. Therefore, this
may be a systematic bias in the UNIT model.

5. Conclusions and further work

We have shown that unsupervised image-to-image trans-
lation networks, in particular the UNIT architecture (Liu
et al., 2017), can be used to debias climate simulations with
respect to observations; a task that has previously been dom-
inated by quantile mapping. We’ve shown how the UNIT
network can produce more spatially realistic mappings of
simulation data than quantile mapping can. This is because
the UNIT networks considers spatial correlations whilst
quantile mapping does not.

Improvements in the power and capacity of unsupervised
image-to-image translation networks are already under way
(e.g. (Park et al., 2020; Wang et al., 2020)), which is very
encouraging for its use in GCM debiasing. However, issues
remain around how reliably the UNIT model architecture
represents the boundary of its target distribution. Further
developments on this issue could allow image-to-image
translation networks to find an important niche in this appli-
cation.
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A. Data

We use the A11-Hist/estl scenario from the C20C+
Project for the HadGEM3-A-N216 GCM. This scenario
represents other possible weather histories we could have
observed without modifying anthropogenic emissions. This
uses observed emissions, and the sea surface temperatures
are prescribed using observations. We also use the ERAS
data (Hersbach et al., 2020) as an observational product.
These data are generated by weather prediction models that
assimilate observations to reproduce the observed climate
state, and provide a complete representation of the atmo-
sphere. In this experiment we used only a single run from
the GCM, although many exist, and single ERAS ‘run’.
These datasets were filtered to the time period in which they
are both available, which covered 1979-2013. This gave
us around 12,500 images from each source, 20% of which
were held back for testing.

The raw datasets were on different grids. For ease of imple-
mentation we decided to regrid them to match the resolution
of the coarser of the two in each experiment. We used
conservative regridding (Jones, 1999).

We preprocessed the data so the 2-metre temperature was in
Celsius and divide it by the temperature standard deviation
globally. This was designed so the physically meaningful
value of 0°C is still given the value of zero after prepro-
cessing. The daily min and max temperatures were scaled
identically to the mean, and then transformed to their dif-
ference from the mean i.e. Tiae — (Taz — Tmean)/0
and Tpin — (Tmean — Tmin)/o. This was motivated by
early experiments where negative daily temperature ranges
were occasionally produced in translations. This happened
solely at land-sea borders, which suggested our network was
struggling to infer this boundary. Due to this we included
a land-sea mask channel as an input to both the generator
and the discriminator. The generator was not tasked with
translating the land-sea mask, as it is a constant.

Due to the extreme skew of precipitation, we applied the
transform precip — precipl/ 4 in preprocessing. We found
this transformation made the distribution of precipitation
values near-normal.

B. UNIT network

We trained a mostly vanilla UNIT network as described in
the original paper (Liu et al., 2017).

Modifications were made to the final activation functions
to enforce positive values of precipitation, T;,42 — Tineans
and T},can — Timin. ReLU activations were used for these.
In each convolutional layer we used replication padding.
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C. Quantile mapping

We implemented empirical quantile mapping. This form
of QM does not assume anything about the shape of the
distribution. A cumulative distribution function (CDF) was
calculated for each month of the year, spatial point, and
variable. For the highest resolution dataset this meant
(12 months) (68 latitudes) (92 longitudes) (5 variables) =
375360 CDFs. Each CDF was estimated by finding the vari-
able value of 100 quantiles spread equally between (0+ €)%
and (100 — €)% where € is a small value (0.1) used to make
the estimate CDF more robust to outliers.

We use linear interpolation of the 100 CDF points to map a
variable value z to a quantile and vice versa.



