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Global Climate Models

Global Climate Models (GCM) are the main tools
available for simulating the response of the global
climate system to different greenhouse gas

concentrations scenarios. Horizontal grid f
Latitude - longitude J ” .
y Vertical
/ exchange
. . between
Climate equations Vertical grid layers
Height or pressure
dv
8p Physical processes in a model T
— _— —V . ’v discreﬁze OVGI' At h Solar Terrestrial
8t (p ) SpOCG Oﬂd -I-lme mos? ere, radiation radiation ¢
pa = RT —» Q
p o Advection H . t l
Q = Cp% — a% ° efc:r;lz:r?gz
) bet
(‘)p q t 2 Momentum Heat Wa]ter s iceé cslt\l:lrﬁﬁg
- = Vi (pva)+p(E-C) =

Source: Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 2(1),
128-139.


https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.95
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.95
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Global Climate Models

Due to computational limitations, GCMs This makes it difficult fo use GCMs in

suffer from a coarse spatial resolution. different socio-economical activities
to tackle climate change.

Source

Source

An increase in spatial resolution is needed



https://ec.europa.eu/info/news/focus-renewable-energy-europe-2020-mar-18_en
https://www.carbonbrief.org/qa-how-do-climate-models-work
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Statistical Downscaling

Statistical Downscaling learns the empirical relationship
between a set of low resolution  variables
Sinpuf/predicfors) and the local variable of interest
output/predictands).

PP technique:
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é%;: Deep Learning (DL) has recently emerged as a promising

Allows to reproduce the observed local climate.

Downscaling S e Shows plausible climate change projections of
precipitation and temperature over Europe.
Low-resolution data High-resolution data
(predictor) (predictand)

In this study we focus on the Perfect Prognosis (PP)
Downscaling where both predictors and predictand are
observational datasets.

WARNING: PP-based downscaling is NOT a super-resolution problem
(more details on PP assumptionsin [1]).

[1] Maraun, D., & Widmann, M. (2018). Statistical downscaling and bias correction for

climate research. Cambridge University Press.
Source



https://media.istockphoto.com/vectors/artificial-neural-network-with-six-layers-3d-view-vector-id1154418493?k=20&m=1154418493&s=612x612&w=0&h=TbOAlCkj1ZmsSMZIPOpZcYmJwjpZo7Kdf-H5nKyfAtw=
https://www.cambridge.org/core/books/statistical-downscaling-and-bias-correction-for-climate-research/4ED479BAA8309C7ECBE6136236E3960F
https://www.cambridge.org/core/books/statistical-downscaling-and-bias-correction-for-climate-research/4ED479BAA8309C7ECBE6136236E3960F
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Probbabillistic regression-based models

Unfortunately, deterministic DL techniques applied to PP Downscaling
may fail to account for extremes.

Conditional mean does
not express the variability
of data.
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Probbabillistic regression-based models

To account for the uncertainty describing these extremes
probabilistic regression-based modeling started to be adopted.

Modelling the distribution
allows to account for the
uncertainty, thus describing
the possible extremes.
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Probbabillistic regression-based models

Taking into account these extremes helps in the decision-making to
tackle climate change.

Source

Source


https://climate.copernicus.eu/index.php/how-close-are-we-reaching-global-warming-15degc
https://www.france24.com/es/asia-pac%C3%ADfico/20210802-inundaciones-china-300-muertos-deslizamientos

Deep Generative Models for PP Downscaling @ IFA

The state-of-the-art probabilistic DL approach [2] We propose the use of Deep Generative Models as

independently modeled the distribution at each tractable  alternatives to model multivariate

predictand site. conditional distributions over the high-dimensional
space of the predictand (in a PP setting). This could

Due to the independence between distributions, bring us certain advantages:

the downscaled variables are not spatially

consistent.

e Improved spatial consistency in comparison with
previous approaches

e Stochasticity, which allows us to account for
uncertainty (extremes)

e Taking advantage of recent developments in
generative modelling
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[2] Bafio-Medina, J., Manzanas, R., & Gutiérrez, J. M. (2020). Configuration and intercomparison of deep
learning neural models for statistical downscaling. Geoscientific Model Development, 13(4), 2109-2124.



https://gmd.copernicus.org/articles/13/2109/2020/
https://gmd.copernicus.org/articles/13/2109/2020/

Downscaling case study over Europe with CVAE & iF(A

To illustrate these points we develop a simple use-case of PP Downscaling over Europe using a Generative Model,
more specifically a Conditional Variational Autoencoder (CVAE).

We compare our CVAE model with the CNN1 state-of-the-art model in [2] under the same conditions:

@ Train period
9;;; 1979-2002

2 Test period
CVAE S 2003-2008

ERA-Interim (2° resolution) EOBS (0.5° resolution)

5 thermodynamical variables Precipitation
x 4 different vertical levels

[2] Bafio-Medina, J., Manzanas, R., & Gutiérrez, J. M. (2020). Configuration and intercomparison of deep
learning neural models for statistical downscaling. Geoscientific Model Development, 13(4), 2109-2124.



https://gmd.copernicus.org/articles/13/2109/2020/
https://gmd.copernicus.org/articles/13/2109/2020/

CVAE model @ IFA
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Comparison: CVAE vs CNN1
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CNNT1 fields, being sampled from independent Bernoulli-Gamma distributions,
present a noisy spatial structure. In contrast, CVAE, while sfill allowing for
sampling, gives much smoother predictions.
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Future Work

We propose the use of Deep Generative Models 1o produce spatially consistent stochastic fields in PP
Statistical Downscaling. Future work will explore:

e Robust quantitative comparison of the spatial consistency of generative models with respect to
non-generative ones.
e Evaluating the models with respect to temporal consistency and reproducibility of exiremes.

e A proper study of the model’s extrapolation capabilities in order to apply it to climate change
projections.

e Further tuning of the CVAE architecture may franslate intfo improvements. Additional mechanisms
such as Normalizing Flows could help modelling a more flexible latent distribution which would
capture better the complex distribution of precipitation fields.

e Explore GAN-based models to further improve the results obtained with CVAEs (e.g Conditional
GAN:Ss).
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