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Necessity of Modeling and Predicting LIB Degradation

[

Lithium-Ion Battery (LIB) )

LIB is pivotal to electrifying transportation and storing intermittent
renewable energy

Degradation and failure limit LIB’s durability and safety Y,

Utility of Modeling Degradation )

Faster and cheaper design-test iterations

More effective online management strategy: monitoring, early

warning, predictive maintenance Y,

Challenges in SOH Evolution Modeling and RUL Prediction h

Various complicated physio-chemical mechanisms not well understood

Strong and nonlinear dependence on usage patterns )

Al current collector

Charge (energy storage) — e-

Electrolyte

urrent collector
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Evaluating Existing Work along Three Dimensions

K Must usage histories be assumed or provided? \

* Assume certain usage amount, like 100 cycles? (e.g. Severson et al. 2019)
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* Assume particular cycling patterns, like 4C discharger (e.g. Strange and dos Reis 2021)
* This dependence can significantly limit generalizability

2. Is degradation dynamics explicitly modeled?
*  Predicting C(Qror =?) = 0.8Cy through dC/d Q¢ or not?
* Modeling dynamics yields higher adaptability and generalizability

3.  How much prior physical knowledge is explicitly incorporated?
*  DPurely data-driven
*  Equivalent-circuit-model-based (ECM)

k *  Physics-based /
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Three Main Existing Approaches to Degradation Modeling

-

Purely Data-Driven N
Trained on charge/discharge curves and crafted features g el nurber
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Agnostic of, but specific to certain cell chemistry/format and cycling pattern o4 ol
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ECM-based v i
i [ .
Enable fast real-time simulation for monitoring Ro
UDI:(:_ R‘ RZ Ui

Lack of diagnostic insights and unable to predict degradation

AN
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Purely physics-based

Gives physical insights by modeling different degradation modes

Fitting protocol unclear and accuracy not yet systematically tested == c
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Our Proposed Physics-Data Hybrid Framework

-

Goal

Studying the accuracy limit of modeling for online battery degradation diagnosis and
prognosis with well-calibrated uncertainty, putting computational costs aside temporarily.

Key Ingredients

~

Base physical models: pseudo-2-dimensional (P2D) + various degradation mechanisms

Characterizing degradation status by a set of model parameters
Uncertainty quantification and statistical model residual modeling
Data assimilation for online state and parameter estimation

Measurements from published battery datasets (e.g. Severson et al. 2019)
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Step 1&2: Parametric Study for Physical Models and

gradation
\ Cycle 1 obs ] Cycle 2 obs )
| y(t) = Hlu(t)] + e(t) | v = Hlu®)] +e) [
*  Step 1: Fit P2D parameters to cells fit 9, it 0,
degraded to different extent ™ :11':[1.:,; ol v :‘L[w B
*  Step 2: Select degradation models , o
. aramerter estimadon
and fit parameters to whole-life data Yoo ) Model selection (Tome zmolix.
/ y(t) = Hlu(t) +e(t) | | a6 = Dla.6:9] + R

Goals

\

Protocol for parameter fitting and model selection with well-calibrated uncertainty

More refined parametric characterization of SOH indicating degradation extent

J




Step 3: Statistical Modeling of Residuals in Physical Models

Paramerter estimation

Whole life obs ] Model selection Hu= Llu;0] + Ry
y(t) = Hlu(t)] + e(f)J d,0 = Dlu,0; ] + R
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Candidate Approaches
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*  Characterize model residuals by certain stochastic processes (e.g. Gaussian processes)
*  Characterize uncertain functional dependence of parameters on conditions

*  Any uncertain functions could be identified by domain knowledge and/or statistical learning
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Step 4: Integrating into BMS-like Online Diagnosis and

Prognosis
% t to
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*  Use sequentially measured data to correct state and parameters in a principled way
*  Both accuracy and uncertainty calibration count
* Ample flexibility to decide which parameters can be fixed and which must be inferred online

*  May not be computationally feasible in real-time applications yet, but still yield valuable insights
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www.a-star.edu.sg/i2r




