Scalable coastal inundation mapping using machine

learning
Ophélie Meuriot Anne Jones
IBM Research Europe IBM Research Europe
ophelie.meuriot@ibm.com anne. jones@ibm. com
Abstract

Coastal flooding is a significant climate hazard with impacts across economic
sectors and society. This study provides a proof of concept for data-driven models
for coastal flood inundation at the country scale, incorporating storm dynamics
and geospatial characteristics to improve upon simpler geomorphological models.
The best fit machine learning model scores an AUC of 0.92 in predicting flooded
locations. For a case study storm event in December 2013 we find that all models
over-predict flood extents, but that the machine learning model extents were closest
to those observed.

1 Introduction

Climate change-driven global sea-level rise increases the risk of coastal flooding through higher
return frequencies of coastal water levels during storms. Although the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report found limited evidence for an increase in storminess
due to climate change, measurable regional rises in mean sea level have already led to increases in
the frequency of inundation (IPCC|2014). The most recent climate change risk assessment for the
UK projects winter weather will be dominated by more mobile cyclonic systems which cause coastal
flooding, exacerbated by 5-10cm higher rises in sea levels than previously projected (Betts, Pearson
2021). Coastal flooding is a substantial climate change concern for both societal and economic
impacts: a significant fraction of global infrastructure (power plants, ports, housing, road and rail)
is located at the coast, and, a combination of sea-level rise, changes in storm surge intensity and
land subsidence combined with economic growth pose immense threats to coastal and low-lying
communities (Oddo et al|2020). There is consequently demand for better quantification of coastal
flood risk for current and future climates across multiple industries and the public sector.

Coastal flood risk quantification poses numerous challenges, including substantial modelling uncer-
tainties and the computational intensity of physical simulation models for storm surge and inundation,
which limit both the resolution and extent over which they can be applied. In this paper we will
address the latter component, and consider the suitability of computationally "lightweight" approaches
to derive inundation from water levels and geospatial features for coastal flood risk mapping at the
country scale, a particular requirement for industry sectors such as transport, energy and utilities who
operate across large geographic domains.

The increase in data availability in the field of environmental sciences has led to the emergence of
data-driven models to represent complex physical processes. Studies have recently shown the use of
machine learning (ML) techniques to evaluate the flood susceptibility of an area. Studies so far have
mainly focused on fluvial and pluvial flooding rather than coastal flooding and have been limited to
smaller regions (Tehrany et al.[|2014} |Chen et al.|2020; |Avand et al.[2021)).

The aim of this paper is to derive a machine learning model for coastal flood mapping using historical
flood records in England. The model will be tested on the December 2013 Storm Xavier event and
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compared to a static inundation model to understand the relative strengths and weaknesses of each
approach. Our work, which is ongoing, will contribute to improved coastal flood risk quantification
and climate change resilience across multiple impacted sectors.

2 Data and methods

The aim of this study is to use a data-driven approach to estimate extents of coastal flooding. The
methodology is summarised in Figure[l]
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Figure 1: Methodology

2.1 Datasets

The variables used in this study to predict coastal flooding include: elevation, slope, aspect, topo-
graphic wetness index (TWI), land cover, sea surface height (SSH) and distance to the coast. The
elevation, slope, aspect, TWI and land cover variables were selected based on a literature review of
flood susceptibility (Avand et al.|2021} [Park, Lee|2020). Past studies mainly focus on fluvial and
pluvial flooding and include variables such as distance to river and rainfall (Avand et al.[2021). As
the focus is here set on coastal flooding the choice of using distance to coast and a SSH is most suited.
A historical record of flooding (Environment Agency|2018)) was used to generate flooded and non
flooded points (5099 points each) as labelling data for the ML model. A description of the variables
and preprocessing steps are included in Appendix [A]

2.2 Methodology

The flooded and non-flooded points were combined into a dataset sorted by date with a 1 assigned to
flooded points and 0 to non flooded points. For each point (day, longitude, latitude) the corresponding
elevation, slope, aspect, TWI, nearest SSH, distance to coast and land cover were assigned. The land
cover was encoded using One-Hot encoding. The dataset was split temporally into training and testing
with the first 70% of the dataset used for training and the last 30% of the dataset used for testing.
The reason for performing a time-based splitting was to ensure the flooded points corresponding to
a single event are not separated. Standard scaling was applied to the non categorical flood factors
(elevation, slope, aspect, TWI, distance to coast and SSH). The ML models were trained using the
flood factors as predictors (elevation, slope, aspect, TWI, land cover, distance to coast and SSH) and
the binary 1 /0 (flooded / non-flooded) as predictand.

Three ML models were assessed: the Support Vector Machine (SVM), k nearest neighbour (kKNN)
and random forest (RF) classification models. The Scikit-learn library was used to train and test the
models. The models were tuned using the following hyperparameters: 5, 10, 15 and 20 neighbours
for the kNN model and maximum depths of 5, 10, 15 and 20 for the RF model with 100 trees. Two
kernel functions were implemented for the SVM model: the linear and radial basis function. After
initial performance assessment on the training dataset, the ML models selected for further evaluation
were the KNN model with 5 neighbours, RF model with 100 trees and a maximum depth equal to
15 and the SVM model with radial basis function. The best performing model was then selected by
using metrics such as the AUC, the accuracy score and the F1 score on the testing set.



2.3 Case study event

The results of the best performing ML model were compared to a static inundation model during the
Storm Xavier flooding event. On the 5" of December 2013, Storm Xavier caused severe flooding
along the East Coast of England. The area specifically chosen for this case study is the Immingham
area. The sea surface height dataset used for the case study is the UKCP18 Short Event Case Studies
of Historical and Future Sea Surface Elevation around the UK which covers the event (3 to 10™ of
December 2013) (Met Office Hadley Centre|2018b).

The static inundation model, also known as the "bathtub" model is a simple geomorphological model
widely used in coastal inundation studies. The method used here is adapted from |[Vousdoukas et al.
(2016). A flood water surface is interpolated using the sea surface height points. Locations where
the elevation is lower than the flood water surface and which are connected to the sea are marked as
flooded.

3 Results

3.1 Model evaluation

Here we present the results of the kNN, SVM and RF ML models. The ROC curves are shown in
Figure 2] The highest AUC was obtained for the RF model with a value of 0.92 followed by 0.89 for
the SVM model and 0.83 for the kNN model. The AUC results are in agreement with the F1 and
accuracy scores with the RF model presenting the highest accuracy and F1 scores. The accuracy of
the RF model is 0.84 compared to 0.8 and 0.79 for the SVM and kNN models respectively. The RF
model has a F1 score of 0.74 compared to 0.71 and 0.67 for the SVM and kNN models respectively.
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Figure 2: ROC curve Figure 3: RF model feature importance

The model selected for the case study was the RF model as it performs the best according to the AUC,
F1 and accuracy scores. The feature importance of the different flood factors are shown in Figure
and provide an indication of the relative influence of each factor. The feature with the highest
importance is elevation (0.37), followed by SSH (0.16), distance to the coast (0.15), slope (0.13)
and TWI (0.10). The features with the lowest importance are land cover (0.05) and aspect (0.05).
The results are in agreement with |Avand et al.| (2021 where elevation presents the highest relative
importance followed by distance to the river, slope, TWI and aspect.

3.2 Case study

The RF model and the static inundation model were run using the maximum SSH recorded during the
Storm Xavier event. The results are shown in Figure [ and compared to the recorded flood extents
from the Environment Agency shown as hashed areas (Environment Agency|2018). The flood extent
is shown in yellow for the RF model and in red for the static inundation model. Areas where both the
flood extents from the RF model and static inundation models overlap are represented in orange.

Compared to the recorded flood extents from the Environment Agency, both the RF and static
inundation models correctly mark the flooded extents as flooded. They however both over predict the



flood extents. The RF model prediction is closer to the Environment Agency recorded flood extents
with a smaller flooded area compared to the static inundation model. The similar shapes in flood
extents for both the static inundation model and RF model can be explained by the importance of
the elevation in both models. The results suggest that the additional flood factors in the RF model
improve the flood extent prediction.
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Figure 4: Flood extents from the static inundation model and the RF model compared to the
Environment Agency Recorded Flood Outlines (Environment Agency|[2018)

4 Implications for coastal flood mapping and future steps

Although the RF model over predicts the flood extent during the Storm Xavier event, this case study
demonstrates the potential of data-driven modelling approaches for coastal flood mapping. The focus
was here set on the Immingham area for which historical flood records were available, however the
model can be applied to a country wide scale. The model was run using a 250m grid based on the
DEM resolution. Higher resolution satellite or LIDAR-derived DEMs are available in the UK, and
will be evaluated in future work.

The model was here trained and tested using Environment Agency Recorded Flood Outline dataset.
The dataset presents the advantage of covering a large time period (1946 to 2020) and over 1300
coastal and tidal floods have been recorded. However not all flood events during that period have
been recorded and the extents may not be precise. Future steps in the model development will involve
using satellite derived flood extents such as Sen1Floods11 (Bonafilia et al.[|(2020)) or validation of
existing flood extents using satellite data.

The model was developed using six static predictors (elevation, distance to coast, slope, TWI, land
cover and aspect) and one dynamic predictor (sea surface height). The aim was to study coastal
flooding independently from fluvial and pluvial flooding. However, storm surge events are often
coincident with high precipitation resulting in rivers overflowing. While modelling such processed
with physics-based models is incredibly complex, The data-driven approach taken here can easily be
adapted to study compound flooding and increase prediction accuracy.

5 Conclusion

ML models (kNN, SVM and RF) were trained and tested to detect coastal flooding using historical
recorded flood outlines between 1970 and 2006 in England. Seven predictors were used including
elevation, distance, SSH, TWI, aspect, slope and land cover. The RF model performed best (AUC of
0.92). The predictions of the RF model and a static inundation model were compared for the Storm
Xavier event in December 2013 against recorded flood extents. Although both models over predicted
the flood extents, the RF flood extents were closer to the observed flood extent. This study provides a
proof of concept for data-driven models for scalable coastal flood mapping and future works will aim
to improve and expand the capabilities of the current method.
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A Appendix

Table 1: Dataset description and preprocessing steps

Dataset

Description

Elevation

The Global Multi-resolution Terrain Data Digital Elevation Model (GMTED
DEM) is used for elevation and has a resolution of 250m. The dataset is ob-
tained through IBM Physical Analytics Integrated Data Repository and Services
(PAIRS). Low elevation coastal areas are most prone to coastal flooding.

Slope and as-
pect

The slope affects the velocity of flow with steeper areas increasing the velocity.
The aspect indicates which direction the slopes face. The slope and aspect are
derived from the DEM using WhiteboxTools with the same grid resolution as
the GMTED DEM.

Topographic
Wetness Index
(TWI)

The topographic wetness is defined as In(a/tan(b)) where a is the local upslope
area and b is the slope angle . It provides an estimation of where water will
accumulate and is commonly used as an indication of soil moisture (Mohamedou!
et al.[(2019)). The TWI is calculated using WhiteboxTools with the same grid
resolution as the GMTED DEM.

Land cover

The copernicus land cover raster is used here and is obtained through IBM
Physical Analytics Integrated Data Repository and Services (PAIRS). The 25m
resolution land cover raster is aligned to the 250m GMTED DEM grid using
QGIS tools. There are 23 different land cover categories including, multiple
vegetation types, open sea, permanent water bodies, wetland and urban areas.

Distance to
coast

The coastline is extracted from the GMTED DEM as the limit between ocean
values (indicated as 0) and land. A raster is created with the minimum distance
to the coastline calculated for each grid point.

Sea  surface
height (SSH)

The sea surface height is obtained from the United Kingdom Climate Projections
2018 (UKCP18) historical simulations of gridded sea surface elevation using
the Met Office HadGEM2-ES (Met Office Hadley Centre|2018al). The dataset
provides hourly values along the British coast from 1970 to 2006. The daily
maximum value is calculated and saved for each coastal point.

Flooded
points

The flooded points are obtained from the Recorded Flood Outlines provided by
the Environment Agency (Environment Agency|[2018)). The dataset includes
flood records from 1946 to 2020. The floods are classified as coastal, tidal and
fluvial and are provided as polygons. The coastal and tidal polygons from the
time period between 1970 and 2006 are filtered to match the time range of the
sea surface height series. The polygons are converted to points using QGIS
with points spaced by a minimum distance corresponding to the GMTED DEM
resolution. A total of 5099 points from historical flood events are generated.

Non flooded
points

5099 non flooded points are generated to match the number of flooded points.
The non flooded points are selected randomly and assigned a unique location
(longitude, latitude) and time (day between 1970 and 2006) combination. A
maximum distance to the coast is set to ensure the selected non flooded points
are not further away than the furthest flooded point.
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