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Abstract

Clouds have been demonstrated to have a huge impact on the energy balance,
temperature, and weather of the Earth. Classification and segmentation of clouds
and coverage factors is crucial for climate modelling, meteorological studies,
solar energy industry, and satellite communication. For example, clouds have a
tremendous impact on short-term predictions or "nowcasts’ of solar irradiance and
can be used to optimize solar power plants and effectively exploit solar energy.
However even today, cloud observation requires the intervention of highly-trained
professionals to document their findings, which introduces bias. To overcome
these issues and contribute to climate change technology, we propose, to the best
of our knowledge, the first two transformer-based models applied to cloud data
tasks. We use the CCSD Cloud classification dataset and achieve 90.06% accuracy,
outperforming all other methods. To demonstrate the robustness of transformers in
this domain, we perform Cloud segmentation on SWIMSWG dataset and achieve
83.2% IoU, also outperforming other methods. With this, we signal a potential
shift away from pure CNN networks.

1 Introduction

Nearly 60% of the Earth surface is covered by clouds (8) and thus, are crucial in regulating the
Earth’s radiation budget, weather forecasting, climate studies, water cycle and many other natural
phenomena. (5) shows that cloud type variations induce radiative flux changes, which in turn influence
changes in climate. Technological intervention into understanding clouds has a tremendous variety of
applications to ameliorate climate change.

Accurate cloud type detection and segmentation can be crucial in building optimized solar energy
power plants.(11) Hourly temporal fluctuation in shortwave solar irradiance is primarily caused
by cloud cover, which is difficult to predict because of its variability (9). Thus, to create optimal
solar grids, accurate 'nowcasts’ that predict short-term variations is essential. Additionally, this
would help reduce the burden on the plant’s energy storage capacity as batteries could be used more
flexibly (9). Thus, this technology plays a vital part in maintaining the shift towards renewable solar
energy. Cloud classification techniques are also key to identification of dangerous weather hazards.
Weather prediction systems, convective current models, and rainfall estimation systems all benefit
from accurate cloud identification (18)). With more than 11,000 natural disasters causing over two
million deaths and USD 3.64 trillion in economic damage — all between 1970 and 2019 (nearly a 5x
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increase) (10), this can be a crucial technological intervention. Cloud segmentation is important to
understand the impact of cloud cover; estimation of local temperature and photo-voltaic power output
in the area would be possible.

Ground-based cloud tasks on images taken from Earth’s ground-level have been explored extensively
in recent literature (13). However, in most practical system:s, it still requires heavy manual intervention
of domain experts. This subjectivity in evaluation process impacts large-scale projects with the
because of inherent biases and uncertainties. To reduce the burden on domain experts and produce
reliable technological intervention, classical ML and DL-based classification and segmentation
algorithms have emerged.

The last few years have witnessed a tremendous rise in CNN-based image classification and seg-
mentation research (17). However, CNNs have been known to suffer from large inductive biases. In
particular, locality and translation equivariance are crucial components of a CNN. These assumptions
hurt the interpretability of CNN algorithms. Of late, visual transformer-based approaches have gained
massive traction for image classification, segmentation and object detection tasks (15 155 20; [2). They
have been known to challenge some of these assumptions while maintaining comparable performance.

In this work, we propose a pure visual transformer: CloudViT and a hybrid CNN-Transformer:
CloudUT to tackle cloud classification on the Cirrus Cumulus Stratus Nimbus Dataset (CCSN) (18)
and cloud segmentation on the SWIMSWG Dataset (6) respectively. We achieve state-of-the-art
results in both tasks and therefore note that the discriminative power of the transformer-driven
approach for the first time (to the best of our knowledge) in this domain. However keeping quantiative
results aside, this approach maintains the neighbourhood structure during the generation of patch
embeddings, and thus does not induce spatial biases since all inter-patch dependencies are learnt from
scratch. This means that the aforementioned inductive biases do not occur throughout the network,
unlike for CNNSs. Crucially, this improves the robustness of our approach.

2 Methodology

We approach the cloud classification task as a multi-class classification problem. Given an input
cloud image, our pure transformer model CloudViT outputs a label prediction. We approach the
segmentation task to achieve classification at a granular level. Our hybrid model CloudUT outputs a
dense label prediction for every pixel, dividing them into distinct regions.
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Figure 1: (a) Cloud U-Net Transformer (CloudUT) (b) Cloud Vision Transformer (CloudViT)



2.1 Cloud Vision Transformer (CloudViT):

We implement CloudViT, a modified visual Transformer model as proposed by (19), adapted from
the original Vision Transformer(7). The transformer architecture consists of three parts — patch
embeddings, encoder, and classification head as shown in the illustration in Fig. [I(b).

Patch Embeddings: Analogous to NLP, in CV an image is tokenized into a sequence of patches
and then converted into patch embeddings using a linear layer. Concretely, the image I is cropped
into IV patches of resolution P x P and N = HW/P?. The patch embeddings (14) retain spatial
information in the transformer. To augment positional information, a learnable position embedding is
added to the patch embeddings.

Zy = [Xcls; Epatch] + Epos (1)

Encoder: Self-attention is a key concept in transformers. The attention weight A;; is computed by
using the similarity between query q' and key ki. The output representation is generated by projecting
the attention-weighted sum across all values in the sequence using a linear layer. In CloudViT, the
Multi-Head Self-attention (MSA) layer with is replaced with a Multi-Head Re-attention (MRA) layer,
which resolves "attention collapse", improves performance and helps train deeper ViT models. The
learn-able transformation matrix © € R¥*# js used to regenerate the multi-head attention maps
into newer ones. Normalization is applied to reduce the layer-wise variance which is very useful in
learning cloud representations of larger dimensions more accurately without “attention collapse”.

. T QK'
Re— Attention(Q, K,V) = Norm <@ (Softma:v ( Nz ))) 7% 2)

Classification Head: The encoded representation for the prepended positional embedding is used for
classification. A linear layer is applied to generate the classification predictions y, given by Eq. 3]

y = MLP(LN(z})) 3)

2.2 Cloud U-Net Transformer (CloudUT):

Segmenting clouds from sky-images is challenging due to the absence of sharp boundaries in the
"twilight zone’ — a belt of evaporating fragments (9). We implement a hybrid CNN-Transformer
model CloudUT with the familar encoder-decoder pattern, as illustrated in Figure [T[(a).

Encoder: Given an input sky image, x € REXWXC we predict pixel-wise labels of size L x W

by training the U-Net architecture (12) (CNN) to encode the input image into high-level feature
representations. Cloud images possess several patterns and textures, and these intricate patterns are
used in describing the class of clouds. We leverage self-attention with a hybrid encoder, by passing
encoded U-Net feature representations into our Transformer model.

zy = MRA (LN (z¢—1)) +2¢—1,2¢ = MLP (LN (z})) + 2, 4)

Decoder: These encoded representations from the Transformer are decoded back into the segmented
maps of full resolution, in a U-Net++ Decoder. The expansive path or the upsampling part of
the U-Net has a large number of feature channels, which allow the network to propagate context
information to higher resolution layers. Skip-connections between the encoder and decoder helps in
easier transfer of gradients for calculations and concatenation of previous feature maps generated by
encoder to ensure the preservation of spatial structure.

3 Experiments

3.1 Dataset Descriptions

Cirrus Cumulus Stratus Nimbus Dataset (CCSN): (18) Consists of 2543 ground-based cloud
images split into 11 unique classes as shown in Fig. [2} All images are of 256x256 pixels resolution



and have large variations in illumination and heavy intra-class semantic variations. To ensure that
a high variety of atmospheric conditions is represented, the dataset was examined by filtering via
various parameters.
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Figure 2: Cirrus Cumulus Stratus Nimbus Dataset(CCSN) Dataset

Singapore Whole Sky Imaging Segmentation Database (SWIMSWG): (6) Segmentation task
that consists of 1013 images of resolution 600x600 pixels, that were shot on a custom sky image
device at different camera elevation angles. Fig[3]shows a few input images. There is wide variation
in illumination and color (which are only partially corrected) due to differences in time of the day,
cloud coverage, and distance from sun.

3.2 Results

Cloud Classification As per (18), we split the CCSN dataset into the same training and test set. We
evaluate the performance of our CloudViT model on the CCSN dataset based on class-wise accuracy,
Precision, Recall and F1 score, as shown in Table [2] We also compare these performances with
other benchmark and custom models. As shown in Table |Ika), CloudViT achieves state-of-the-art
classification accuracy of 90.06%.

Cloud Segmentation Similar to (16), we split the SWIMSWG Dataset into 860 images in training set
and 100 in test set. We use mloU (Mean Intersection over Union) and mDice scores to evaluate our
segmentation model as shown in Table[T[b). To show the robustness of our model, we also segment
cloud images from CCSN Dataset and generate segmentation masks as output. Compared to the
benchmark U-Net model (12), our CloudUT model achieves state-of-the-art mIoU of 0.832.

Precision Recall Fl1 Accuracy %_?\?eetl V) Om 71556 (r)n 515)31;;
ResNet 0.84 0.82 0.81 83.30 DeepLabV3 (3) 0.6281 0.7036
CNet (18) 0.84 0.87 0.86 87.62 PLS @) 0.6467 0.6919
CloudViT 091 092 0.89 90.06 CloudUT (Ours) 0.832  0.8927

Table 1: Model comparison on (a) CCSN dataset and (b) SWIMSWG dataset

Ci Ac As Cu Cb Ct Sc St Mean
Accuracy (%) 91.30 9450 69.29 96.73 91.70 100 68.92 88.14 90.06

F1 score 0.96 0.96 0.59 0.96 0.92 1 0.69 0.82 0.89
Precision 0.92 0.92 1 0.92 0.92 1 0.72 0.9 0.91
Recall 1 1 0.72 1 0.92 1 1 0.75 0.92

Table 2: Classification metrics on CCSN Dataset

4 Discussion and Conclusion

In this work, we propose two visual transformer-based approaches: CloudViT and CloudUT for cloud
classification and segmentation respectively. We achieve state-of-the-art results in both tasks and
empirically demonstrate the power and robustness of visual transformers for cloud image data. To
the best of our knowledge, we are the first work to extend visual transformers to cloud data domain
and demonstrate a deviation from popular CNN-based approaches. With these results, we hope to
stimulate further research in pure transformer-based approaches for semantic segmentation, as well
as in CV for cloud data in general.

We believe this technology can be deployed on edge devices and be used in the domains of weather
forecasting, climate studies, water cycle studies, solar irradiance prediction and other phenomena.
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Figure 3: Segmentation Results from CloudUT Model

This automated DL method can also be used to save human expert hours, reduce inherent biases and
consequently create larger-scale datasets to study global warming.
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