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Summary of this work

o Carbon capture and storage (CCS) is one approach to help mitigate global
warming.

 However, dynamics of the injected CO, plume is uncertain.

* This study proposes a learning-based inverse-free prediction method that can
accurately and rapidly forecast CO, movement and distribution with uncertainty
guantification based on limited simulation and observation data.

 The machine learning (ML) techniques include dimension reduction, multivariate
data analysis, and Bayesian learning.

 The outcome is expected to provide CO, storage site operators with an effective
tool for timely and informative decision making.
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Conceptual Goal
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State-of-the-Art: Inverse Modeling
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Our approach: Learning-based Inversion-free Prediction (LIP)
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Experiment

e Data source: 100 samples of CO, pressure in the 3D domain simulated from the 100
geomodels with low-, mid-, and high-porosity.

« Problem: Use CO, pressure measurements at layer 3 of four injection wells to predict
the spatial distribution of pressure in layer 3 after 10 years of injection.

Target variable (h): CO, pressure map at year 10, 211 * 211 grid cells = 44521 variables.

Observation variable (d): Case | Case Il Case lll Case IV Case V

CO, pressure observations

5 years of 6 years of 7 years of 8 years of 9 years of
from the 4 injection wells

observations observations observations observations observations

* Obijective: Evaluate LIP method’s accuracy, efficiency, and capacity to incorporate
streaming observations to improve predictions.

o Synthetic study: Choose one sample as synthetic “truth” and the other 99 samples for
learning. We had 3 choices of synthetic “truth” corresponding to low-, mid-, and high-
porosity datasets to evaluate the method’s robustness and generalizability.
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Results: Fast and accurate prediction with UQ

* Results indicate that our method can effectively incorporate observations to improve
prediction accuracy and reduce predictive uncertainty.

* The analysis takes about 2 sec after we have the 100 simulation samples.
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* Targe variable: CO, pressure plume in layer 3 after 10 years injection.

* Observations: 9 years of pressure measurements from four injection wells in layer 3.
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Results: Timely forecasts via rapid measurements integration

» Results indicate that our method can effectively assimilate observation streams
to gradually improve predictions.

* The data assimilation does not require additional reservoir simulations which
promises the incorporation of real-time measurements for timely forecasts in field
operations.
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Incorporating observation streams to improve prediction
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Results: Robust prediction performance

* We applied our method to several synthetic datasets with different porosities.

 All the numerical experiments indicate that our method can effectively incorporate
observations to improve prediction accuracy and reduce predictive uncertainty, giving

robust performance.
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Impacts and Future work

 The proposed LIP method has potential to fundamentally change how real-time
decisions are made about CO, storage operations.

* Bypassing the traditional workflow of history matching and then forward
simulations, LIP makes direct forecasting by learning observation-prediction
relationship and provides continually updating forecasts of CO, distributions from
streaming observations, thus providing operators with earlier warning of off-
normal behavior and more time to implement mitigation measures.

* In the future, we will apply LIP to actual measurements from the field and deploy
it to CO, storage operators for real-time decisions.
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