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Summary of this work

• Carbon capture and storage (CCS) is one approach to help mitigate global 
warming.

• However, dynamics of the injected CO2 plume is uncertain.
• This study proposes a learning-based inverse-free prediction method that can 

accurately and rapidly forecast CO2 movement and distribution with uncertainty 
quantification based on limited simulation and observation data. 

• The machine learning (ML) techniques include dimension reduction, multivariate 
data analysis, and Bayesian learning.

• The outcome is expected to provide CO2 storage site operators with an effective 
tool for timely and informative decision making.
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Conceptual Goal
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State-of-the-Art: Inverse Modeling
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Challenges:
• Iterative inverse modeling;
• Time: 10,000 runs * 10 hours;
• Repeat the process for new 

data; incapable of automated 
and fast updating;

• Hard to consider various and 
multiscale uncertainty;

• An ill-posed problem causing 
poor prediction.

Iterative Inverse modeling

Forward model prediction
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Our approach: Learning-based Inversion-free Prediction (LIP)
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• Fully parallelizable
• Time: one forward model run
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Online learning
• ML techniques (dimension 

reduction and Bayesian learning)
• Time: <1min and robust solution
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Experiment

• Data source: 100 samples of CO2 pressure in the 3D domain simulated from the 100 
geomodels with low-, mid-, and high-porosity.

• Problem: Use CO2 pressure measurements at layer 3 of four injection wells to predict 
the spatial distribution of pressure in layer 3 after 10 years of injection.

• Objective: Evaluate LIP method’s accuracy, efficiency, and capacity to incorporate 
streaming observations to improve predictions.

• Synthetic study: Choose one sample as synthetic “truth” and the other 99 samples for 
learning. We had 3 choices of synthetic “truth” corresponding to low-, mid-, and high-
porosity datasets to evaluate the method’s robustness and generalizability. 

Target variable (h): CO2 pressure map at year 10, 211 * 211 grid cells = 44521 variables. 

Observation variable (d): 
CO2 pressure observations 
from the 4 injection wells

Case I Case II Case III Case IV Case V

5 years of 
observations

6 years of 
observations

7 years of 
observations

8 years of 
observations

9 years of 
observations
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Results: Fast and accurate prediction with UQ

• Results indicate that our method can effectively incorporate observations to improve 
prediction accuracy and reduce predictive uncertainty.

• The analysis takes about 2 sec after we have the 100 simulation samples.

• Targe variable: CO2 pressure plume in layer 3 after 10 years injection.
• Observations: 9 years of pressure measurements from four injection wells in layer 3. 

• Prior: results based 
on the 99 prior 
simulation samples.

• Posterior: results 
after incorporating 
observations using 
our method.
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Results: Timely forecasts via rapid measurements integration

• Results indicate that our method can effectively assimilate observation streams 
to gradually improve predictions.

• The data assimilation does not require additional reservoir simulations which 
promises the incorporation of real-time measurements for timely forecasts in field 
operations.
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Results: Robust prediction performance

• We applied our method to several synthetic datasets with different porosities.
• All the numerical experiments indicate that our method can effectively incorporate 

observations to improve prediction accuracy and reduce predictive uncertainty, giving 
robust performance.
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Impacts and Future work

• The proposed LIP method has potential to fundamentally change how real-time 
decisions are made about CO2 storage operations. 

• Bypassing the traditional workflow of history matching and then forward 
simulations, LIP makes direct forecasting by learning observation-prediction 
relationship and provides continually updating forecasts of CO2 distributions from 
streaming observations, thus providing operators with earlier warning of off-
normal behavior and more time to implement mitigation measures.

• In the future, we will apply LIP to actual measurements from the field and deploy 
it to CO2 storage operators for real-time decisions.


