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Abstract

By leveraging deep learning to automatically classify camera trap images, ecolo-
gists can monitor biodiversity conservation efforts and the effects of climate change
on ecosystems more efficiently. Due to the imbalanced class-distribution of camera
trap datasets, current models are biased towards the majority classes. As a result,
they obtain good performance for a few majority classes but poor performance for
many minority classes. We used two-phase training to increase the performance
for these minority classes. We trained, next to a baseline model, four models
that implemented a different versions of two-phase training on a subset of the
highly imbalanced Snapshot Serengeti dataset. Our results suggest that two-phase
training can improve performance for many minority classes, with limited loss
in performance for the other classes. We find that two-phase training based on
majority undersampling increases class-specific F1-scores up to 3.0%. We also find
that two-phase training outperforms using only oversampling or undersampling
by 6.1% in F1-score on average. Finally, we find that a combination of over- and
undersampling leads to a better performance than using them individually.

1 Introduction

A recent report by the World Wide Fund for Nature (WWF) confirms that biodiversity and ecosystems
are deteriorating worldwide [1]. Population sizes of mammals, birds, amphibians, reptiles and fish
have decreased by an average of 68% between 1970 and 2016 across the world. This decrease in
biodiversity has several causes, such as habitat loss due to pollution, species overexploitation or
climate change. Biodiversity is important since it is a key indicator of overall healthy ecosystems
which in their turn have important social and economic consequences for humans. In particular,
biodiversity and ecosystems influence our water quality, air quality and climate, they secure our food
production and impact the spread of infectious diseases originating from animals [1, 5].

Machine learning (ML) can help to more efficiently measure and monitor the well-being of ecosystems
and the success of biodiversity conservation efforts [14, 16, 35, 25]. As an example, this paper
proposes a method for automatic classification of camera trap images, a type of motion triggered
cameras used in biological studies to estimate animal population density and activity patterns [26,
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7, 27, 29, 32, 34]. Since manually labeling large numbers of camera trap images is time consuming
and costly [17], ML could be used to automatically detect animals and the species to which they
belong in images. This work uses Convolutional Neural Networks [18, 19] to classify camera trap
images. Training a CNN on a dataset of camera trap images is challenging, because camera trap
images often only depict a part of an animal, because of high intra-class variation due to differences in
backgrounds, and because the class-distribution of camera trap datasets is typically highly imbalanced.
This imbalance is inherent to camera trap datasets since it reflects the imbalance of ecosystems [33],
and it results in biased classifiers that perform very well for a few majority classes but poorly for many
minority classes. Classifiers that perform well on all classes would be of more value to ecologists,
and moreover, rare or less observed animal species might even be of special interest to research.
Therefore, solutions are needed to mitigate this imbalance when classifying camera trap images.

To this end, we use a two-phase training method [20] to mitigate class imbalance, for the first time to
the best of our knowledge on camera trap images. In experiments we compare it to different data-level
class imbalance mitigation techniques, and show that it improves performance on minority classes,
with limited loss in performance for other classes, resulting in an increase in macro F1-score.

2 Related work

Pioneering studies that automatically classified camera trap images relied on manual feature extraction
and smaller datasets [6, 31, 39, 4]. Better and more scalable results were later achieved with deep
CNNs and larger datasets [8, 24, 32, 38, 28]. Generally, models trained by these scholars achieve
accuracies well above 90%, but the models are biased towards majority classes, which severely affects
their class-specific performance. Especially the performance for rare species is poor. Scholars dealt
with this challenge by removing the rare classes from the dataset [8, 38], with confidence thresholding
and letting experts review the uncertain classifications [38], with weighted losses, oversampling and
emphasis sampling [24] or by using a combination of additional image augmentations for rare classes
and novel sampling techniques [28]. Although [24] managed to greatly increase the accuracy for a
few rare classes using oversampling, none of the aforementioned techniques systematically improved
accuracy for most of the rare species. It can thus be concluded that dealing with class-imbalance in
the context of camera trap image classification is still an unsolved issue.

Two categories of methods for mitigation of class imbalance in deep learning exist: data-level and
algorithm-level techniques [2, 15]. The former refers to techniques that alter the class-distribution of
the data, such as random minority oversampling (ROS) and random majority undersampling (RUS),
which respectively randomly duplicate or randomly remove samples to obtain a more balanced dataset.
More advanced techniques can also be used to synthesize new samples [3, 9, 12, 36, 37, 21], but
these are computationally expensive, and they require a large number of images per class and images
within a class that are sufficiently similar. Algorithm-level techniques are techniques that work on
the model itself, such as loss functions or thresholding [22, 23, 2, 15, 11, 2]. Two-phase training,
a hybrid technique, was recently introduced and shown to obtain good results for training a CNN
classifier on a highly imbalanced dataset of images of plankton [20], and it was later used by others
for image segmentation and classification [10, 2]. Because of these promising results and the broad
applicability of 2-phase training, we test 2-phase training for camera trap images.

3 Two-phase training

Two-phase training consists of the following steps [20]. Dorig is the original, imbalanced dataset.
Figure 3 in the appendix shows an overview of two-phrase training.

1. Phase 1: a CNN fθ is trained on a more balanced dataset Dbal, obtained by any sampling
method such as ROS, RUS or a combination thereof.

2. Phase 2: the convolutional weights3 of fθ are frozen, and the network is trained further on
the full imbalanced dataset Dorg.

The 1st phase trains the convolutional layers with (more) equal importance allocated to minority
classes, so they learn to extract relevant features for these classes as well. In the 2nd phase the
classification layers learn to model the class imbalance present in the dataset.

3I.e. all weights except the weights of the fully connected layers that project the CNN features to the classes.
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Model Phase 1: Accuracy Phase 2: Accuracy Phase 1: F1 Phase 2: F1

Dorig: Baseline 0.8527 / 0.3944 /
D1

bal: ROS 0.8326 0.8528 0.3843 0.4012
D2

bal: RUS 0.8012 0.8491 0.3681 0.4147
D3

bal: ROS&RUS(15K) 0.8346 0.8454 0.4179 0.4094
D4

bal: ROS&RUS(5K) 0.7335 0.8066 0.3620 0.4001
Table 1: Model Comparison - Top-1 accuracy and Macro F1-score.

4 Dataset & Experiments

We used the 9th season of the publicly available Snapshot Serengeti (SS) dataset, which is generated
by a grid of 225 cameras spread over the Serengeti National Park in Tanzania [30]. The images were
labeled by citizen scientists on the Zooniverse platform. After filtering some images, the full dataset
Dorig contains 194k images belonging to 52 classes. The class-distribution of this dataset is depicted
in fig. 4 in the appendix, and is highly imbalanced, with the three majority classes accounting for
just under 75% of the data. We used this smaller subset of the full SS dataset for computational
tractability, and to ensure insights remain valid for ecologists with access to smaller datasets.

Appendix A.2 lists the hyperparameters4. First we trained the baseline CNN on the full dataset Dorig .
Next, we trained 4 models with different instantiations of Dbal for phase 1 of two-phase training.

1. D1
bal: ROS (oversampling) classes with less than 5k images until 5k, see appendix fig. 5.

2. D2
bal: RUS (undersampling) classes with more than 15k images until 15k.

3. D3
bal: ROS classes with less than 5k images until 5k as in 1., and RUS classes with more

than 15k images until 15k as in 2. Shown in fig. 6 in the appendix.
4. D4

bal: ROS classes with less than 5k images until 5k as in 1., and RUS classes with more
than 5k images until 5k.

We used a lower sample ratio for classes with very few images to avoid overfitting (appendix A.3).
As evaluation metrics we used not only top-1 accuracy but also precision, recall and F1-score, since
these metrics are more informative to class-imbalance. We report their values macro-averaged over
classes as well as the class specific values (in appendix tables 4-6). The results of the models after
phase 1 correspond to the results that we would obtain by only using ROS, RUS or a combination of
both (and no two-phase training). These results will thus serve as a baseline.

5 Results

Accuracy and Macro F1. Table 1 shows the accuracy and F1-score of the models after the 1st
and the 2nd phase5. Training on more balanced datasets reduces accuracy in phase 1 for all models
compared to the baseline which was trained on the imbalanced dataset Dorig. However, further
training the classification layers in phase 2 on the full dataset increases accuracy back to more or less
the baseline level for all models (except ROS&RUS(5K)), meaning that two-phase training lost little
to no accuracy. The phase 2 mean accuracy is substantially higher than the phase 1 mean accuracy.

The F1-scores of most models also drop in phase 1. Interestingly, phase 2 raises the F1-score of
most models again, and all models obtain an F1-score after phase 2 that is higher than the baseline:
3.0% on average. The RUS model obtains the highest F1-score after phase 2: an increase of 5.1%
compared to the baseline, while the ROS&RUS(15K) model obtain the highest F1-score overall6.
Most two-phase trained models outperform their counterparts which were only trained on more
balanced datasets. As for the accuracy, the mean F1-score in phase 2 is substantially higher than the
mean F1-score in phase 1: 6.1%.

These observations lead us to conclude that 1) two-phase training outperforms using only sampling
techniques across most sampling regimes, and 2) two-phase training can increase the F1-score without

4Our code is publicly available: https://github.com/FarjadMalik/aigoeswild.
5Appendix A.4 contains more results and in-depth discussion.
6We consider the F1-score of ROS&RUS(15K) after phase 1 an anomaly which needs further analysis.

3

https://github.com/FarjadMalik/aigoeswild


(a) (b)

Figure 1: Relative difference in F1-score per species of (a) the two-phase RUS model vs. the baseline,
and (b) phase 2 vs. phase 1 of the RUS-model. The appendix contains larger versions: figs. 8, 10.
Species are sorted in descending order according to their occurrence frequency.

substantial loss in accuracy, meaning it improves minority class predictions with very limited loss in
majority class performance. These findings are in line with the results of [20], though they report
greater increases in F1-scores than us, possibly due to an even more imbalanced dataset. They also
find RUS to work best for creating Dbal for phase 1. The F1-scores are substantially lower than the
accuracies (idem for precision and recall, appendix tables 2-3). This is because the class-specific
values for these metrics are high for the majority classes, but extremely low for many minority classes,
confirming that the imbalanced data creates a bias towards the majority classes.

Class-specific performance. Class-specific F1-scores increase with two-phase training for the
majority of (minority) classes. Two-phase training with RUS leads to the greatest average increase of
F1-score per class: 3% (ignoring the classes for which the F1-score remained 0.0%). This increase is
most notable for minority classes. RUS performing best is remarkable, since we trained the RUS
model in phase 1 with only 85k images, compared to 131k–231k for the other models. Fig. 1a shows
the changes in F1-score due to two-phase training with RUS.

6 Conclusion

We explored the use of two-phase training to mitigate the class imbalance issue for camera trap
image classification with CNNs. We conclude that 1) two-phase training outperforms using only
sampling techniques across most sampling regimes, and 2) two-phase training improves minority
class predictions with very limited loss in majority class performance, compared to training on
the imbalanced dataset only. In the future we would like to rerun our experiments with different
random seeds to obtain more statistically convincing results, compare two-phase training to other
algorithm-level imbalance mitigation techniques, and test it on varying dataset sizes and levels of
class imbalance.
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A Appendix

A.1 Figures

Figure 2: Four examples of camera trap images.

A.2 Experiments & hyperparameters

We omitted images that contain more than one species, images that do not contain any animal
(class ‘blank’), as well as images belonging to the class ‘human’. We split our dataset following a
80%-10%-10% train, validation and test split. We chose for the ResNet-18 architecture [13], which
performed well in previous camera trap literature [24, 32, 38]. We used the ADAM optimizer, a
batch-size of 64 and a learning rate of 0.001. Data augmentation and early stopping (for the baseline
as well as for both phases of all 2-phase models) were used to avoid overfitting. We used categorical
cross-entropy as loss function. We trained the baseline model for 10 epochs on the training set, and
the ROS model, the RUS model, the ROS&RUS(15K) model and the ROS&RUS(5K) model in the
first phase for respectively 10, 14, 14 and 17 epochs. In the second phase, they were trained for an
additional 7, 14, 8 and 14 epochs. Hyperparameters, incl. the ROS and RUS thresholds of 5k and
15k, were taken from existing literature, or experimentally tuned using a grid search.

After training all the four models in the first phase, we extracted the weights of all the 18 layers of the
models. We loaded these weights into four new models with the same ResNet-18 architecture. Before
fine-tuning these models on the original, imbalanced, training data set, we froze the weights in the 17
convolutional layers. Only the single fully connected layer of the ResNet-18 model was fine-tuned
on the training set. By freezing the majority of the layers, the number of trainable parameters was
reduced from slightly over 11 million to only 26,676. This implies that training the second phase is
far less computationally demanding than training the models in the first phase.

A.3 Sampling

A.3.1 ROS

For the ROS data set, we oversampled all the classes that contained less than 5000 images to a
maximum of 5000 images. The three majority classes (see fig. 4) were not oversampled. Since
our minority classes contained very little samples, we did not oversample these classes up to 5000
images, as this would likely result in overfitting. Instead, for all classes that contained less than
100 images, we applied a sample ratio of 10. This means that the image(s) for a certain class were
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Figure 3: Schematic overview of a general two-phase training implementation.
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Figure 4: Class-distribution of the 9th season of the SS dataset.

oversampled until 10 times the original number of images was present in the data set. This is similar
to Schneider et al. [28], who supplemented the minority classes with less than 100 images with fixed
augmentations until at least 100 images were available. For their data set, this also implied a sampling
ratio of roughly 10 for the smallest classes.

In order to obtain a more balanced dataset, this sampling ratio was gradually decreased. For classes
that originally contained between 100 & 500, 500 & 1000, and 1000 & 5000, we used sample ratios
of respectively 8, 6 and 4. We thresholded oversampling at 5000 for the classes that contained less
than 5000 images. This threshold was set experimentally and is higher than the threshold of 1000
that Lee et al. [20] used when trying two-phase training in combination with ROS. We found that
oversampling to 1000 images was not sufficient for our data set. It is, however, to be noted that a
threshold of 5000 implies increased computational requirements. While the original training set
contained slightly over 155,000 images, the ROS data set contained slightly over 231,000 images.
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Figure 5: Class-distribution of the dataset used in the first phase for the ROS model.

11



Figure 6: Class-distribution of the dataset used in the first phase for the ROS&RUS(15K) model.
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Model First Phase Second Phase
Baseline 0.5055 N.A.
ROS 0.4691 0.5053
RUS 0.4609 0.5319
ROS&RUS (15K) 0.4519 0.5284
ROS&RUS (5K) 0.3702 0.5640

Table 2: Model Comparison - Precision.

Model First Phase Second Phase
Baseline 0.3558 N.A.
ROS 0.3689 0.3635
RUS 0.3592 0.3648
ROS&RUS (15K) 0.4094 0.3563
ROS&RUS (5K) 0.3974 0.3438

Table 3: Model Comparison - Recall.

A.3.2 RUS

To avoid an increase in the number of samples in our dataset, such as in the case of ROS, we decided
to also train a model on a randomly undersampled dataset. Lee et al. [20] obtained the best results
for two-phase training when using RUS only. The authors put their threshold at 5000, meaning
that all the classes with more than 5000 images were undersampled until they held at most 5000
samples. Experimental results indicated that this threshold was too low for us when it was not used in
combination with ROS. The vast reduction in the size of the data set might be a possible explanation
for this. Therefore, we set the undersampling threshold at 15,000 for the RUS model. The RUS
data set thus looks exactly the same as the original training data set, except for the fact that the three
majority classes all contain 15,000 images instead of respectively 48,377; 36,480; and 30,368 images.
This brought the total number of images for the RUS data set to slightly over 85,000.

A.3.3 ROS&RUS(15K) and ROS&RUS(5K)

The limited previous literature on two-phase training has not used this method in combination with
both ROS and RUS at the same time in the first phase. Therefore, we decided to explore the effective-
ness of two-phase training when both ROS and RUS are used in the first phase. For this purpose, we
created two more balanced data sets, which we refer to as ROS&RUS(15K) and ROS&RUS(5K).
We obtained the ROS&RUS(15K) data set by combining the over- and undersampling regimes of
the ROS model and the RUS model respectively. The class-distribution of this data set is depicted
in figure 6. Interestingly, by using these two sampling regimes, we got a data set that only contains
6000 images more than the original training set.

A.4 Extra results & discussion

A.4.1 Overall performance of the models: Overall top-1 accuracy and & Macro F1-score

Table 1 showed the top-1 accuracy and the Macro F1-score of the models for the 1st and the 2nd
phase. Tables 2 and 3 additionally show the precision and recall.

The values of the class-weighted F1-score (same for precision and recall as shown in appendix
table 2 and 3) are substantially lower than our overall accuracy. This is caused by the fact that the
class-specific values for these metrics are very high for the majority classes, but extremely low for
many minority classes. For example, the recall varies between 0% for the minority classes and 96.0%
for the majority class. Many of these minority classes contain only few images in the training and the
test set, which explains why the model performs poorly on them. This indicates that the imbalanced
data indeed created a bias towards the majority class(es). This bias is also reflected in the difference
in discrepancy between precision and recall for classes of different sizes. For the majority classes,
we find a higher recall than precision. This indicates that the model predicts the majority class more
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often than necessary. For the minority class, the precision tends to be higher than the recall. This
indicates that the baseline model could likely improve performance when more attention is diverted
from the majority classes to the minority classes.

Taking both overall accuracy and macro F1-score into account, we can conclude that two-phase
training can result in a small increase in F1-score without losing overall accuracy. This slight increase
in F1-score can be attributed to a slight increase of both the precision and recall. The ROS and the
RUS models seem to perform best, given that they improve upon the F1-score of the baseline model,
without or with little decrease in overall accuracy. Generally, two-phase training also outperforms
only using ROS, RUS or a combination of both. Training in two phases leads to an improvement
in both overall accuracy and F1-score compared to the models that were trained in one phase on a
more balanced dataset. An exception to this observation is the ROS&RUS(15K) model. This model
achieves the highest F1-score but performs slightly worse than the baseline model in terms of overall
accuracy. From our results, we can see that the RUS model benefits more in terms of increase in
precision when fine-tuning the classification layer. Possibly, training the ROS model for both phases
with full majority classes limited the increase in precision for this model, since a focus on majority
classes tends to lead to many false positives and thus a lower precision.

Our results are in accordance with findings of Lee et al. [20], who also concluded that two-phase
training in combination with RUS leads to the highest increase in F1-score with respect to the baseline
model. However, they managed to almost double their baseline F1-score from 17.73% to 33.39%.
One possible explanation for this larger increase in F1-score might be that their dataset was more
imbalanced than ours. This would mean that two-phase training becomes more effective when
datasets become more imbalanced. Nevertheless, this thesis thus presents some evidence for the
argument by Lee et al. [20], who stated that by making the dataset more balanced in the first phase,
animal population information is lost and that this information consequently needs to be restored by
fine-tuning the classification layer on the training set representing the population distribution of the
ecosystem.

A.4.2 Class-specific performance

Table 5 and table 6 show respectively the class-specific results for the ROS and the RUS model, when
trained using two-phase training. These tables follow the same structure as table 4, which shows the
class-specific results for the baseline model, except for the fact that the Count(Train) column now
depicts the number of samples that were used for training in the first phase only. In the second phase,
all the four models were fine-tuned on the original training set. Figs. 7 and 8 show the relative change
in F1-score when using ROS and RUS, respectively, versus the baseline.

A.4.3 Discussion of two-phase training: phase 1 compared to phase 2

Figs. 9 and 10 show the relative change in F1-score when using ROS and RUS, respectively, in phase
2 versus phase 1.

The large performance differences between the first and the second phase of the ROS, the RUS and
the ROS&RUS(5K) model can mainly be attributed to the vast increase in precision that is obtained
when fine-tuning the classification layer. A possible explanation for this observation is that in the
first phase, precision and recall are low given that the distribution of the training set does not match
that one of the test set. At this stage, the model might be good at feature extraction for the minority
class images. However, the classification layer is still not used to the real data distribution. Therefore,
the models might predict the oversampled classes too often, leading to a lower precision. After
fine-tuning the classification layer, the model might be better able to combine its enhanced feature
extraction skills with respect to the minority class images with the knowledge it has on the real data
distribution.

A.5 Limitations & future work

We did not achieve a similar overall accuracy for our baseline model compared to most other works.
Although achieving a high overall accuracy was not the main goal of this thesis, we consider our
baseline performance as a limitation since it remains unknown whether two-phase training could also
lead to increase in F1-score without losing overall accuracy, when the accuracy is very high.
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Figure 7: Percentage increase or decrease in F1-score per species of the ROS model compared to the
baseline model.
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Figure 8: Percentage increase or decrease in F1-score per species of the RUS model compared to the
baseline model.
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Figure 9: Percentage increase or decrease in F1-score per species of the second phase of the ROS
model compared to the first phase.
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Figure 10: Percentage increase or decrease in F1-score per species of the second phase of the RUS
model compared to the first phase.

18



Species Precision Recall F1-score Count (Train) Count (Test)

wildebeest 0.8612 0.9601 0.908 48377 6047
zebra 0.9096 0.9377 0.9234 36480 4560
gazelleThomsons 0.9116 0.9078 0.9097 30368 3795
elephant 0.9382 0.6902 0.7953 4761 594
buffalo 0.804 0.6531 0.7207 3920 490
warthog 0.5548 0.6631 0.6041 3730 466
giraffe 0.9286 0.7628 0.8375 3145 392
gazelleGrants 0.5641 0.4314 0.4889 2857 357
impala 0.7595 0.7551 0.7573 2746 343
otherBird 0.5246 0.431 0.4732 2380 297
hartebeest 0.685 0.6339 0.6585 2368 295
hyenaSpotted 0.5202 0.6326 0.5709 2119 264
guineaFowl 0.7963 0.6825 0.735 1516 189
lionFemale 0.9545 0.28 0.433 1207 150
topi 0.5764 0.5533 0.5646 1204 150
baboon 0.7021 0.528 0.6027 1003 125
secretaryBird 0.9012 0.8111 0.8538 735 90
eland 0.9429 0.3667 0.528 723 90
hippopotamus 0.9143 0.8421 0.8767 608 76
dikDik 0.6747 0.7671 0.7179 590 73
ostrich 0.6667 0.339 0.4494 478 59
cheetah 0.4615 0.2069 0.2857 470 58
reedbuck 0.7292 0.614 0.6667 462 57
koriBustard 0.4677 0.537 0.5 435 54
insectSpider 0.3636 0.0851 0.1379 385 47
jackal 0.4583 0.234 0.3099 383 47
lionMale 0.375 0.1667 0.2308 294 36
serval 0.6 0.3 0.4 242 30
hare 0.9231 0.4444 0.6 220 27
mongoose 0.4 0.1905 0.2581 168 21
vervetMonkey 0.0 0.0 0.0 120 12
porcupine 1.0 0.2857 0.4444 118 14
batEaredFox 0.75 0.2727 0.4 96 11
aardvark 1.0 0.2 0.3333 88 10
waterbuck 0.6667 0.2222 0.3333 78 9
aardwolf 1.0 0.1111 0.2 73 9
leopard 0.0 0.0 0.0 48 5
bushbuck 0.0 0.0 0.0 34 4
vulture 0.0 0.0 0.0 32 4
duiker 0.0 0.0 0.0 29 3
hyenaStriped 0.0 0.0 0.0 29 3
cattle 0.0 0.0 0.0 27 3
reptiles 0.0 0.0 0.0 17 2
rhinoceros 1.0 1.0 1.0 15 1
steenbok 0.0 0.0 0.0 15 1
honeyBadger 0.0 0.0 0.0 14 1
caracal 0.0 0.0 0.0 14 1
civet 0.0 0.0 0.0 11 1
wildcat 0.0 0.0 0.0 8 1
genet 0.0 0.0 0.0 8 1
zorilla 0.0 0.0 0.0 5 1
rodents 0.0 0.0 0.0 1 1

Macro 0.5055 0.3558 0.3944 155254 19377
Table 4: Baseline Model - Per Species Statistics.
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Species Precision Recall F1-score Count (Train) Count (Test)

wildebeest 0.8438 0.9666 0.901 48377 6047
zebra 0.9173 0.9143 0.9158 36480 4560
gazelleThomsons 0.8813 0.9333 0.9066 30368 3795
giraffe 0.9112 0.7857 0.8438 5000 392
guineaFowl 0.8506 0.6931 0.7638 5000 189
hartebeest 0.77 0.522 0.6222 5000 295
impala 0.7055 0.7055 0.7055 5000 343
otherBird 0.6058 0.4242 0.499 5000 297
buffalo 0.765 0.6776 0.7186 5000 490
gazelleGrants 0.5312 0.381 0.4437 5000 357
warthog 0.7205 0.603 0.6565 5000 466
elephant 0.8893 0.7576 0.8182 5000 594
hyenaSpotted 0.6368 0.5644 0.5984 5000 264
lionFemale 0.7368 0.56 0.6364 4828 150
topi 0.6552 0.38 0.481 4816 150
secretaryBird 0.9565 0.7333 0.8302 4410 90
eland 0.8776 0.4778 0.6187 4338 90
baboon 0.8481 0.536 0.6569 4012 125
ostrich 0.6296 0.2881 0.3953 3824 59
cheetah 0.6452 0.3448 0.4494 3760 58
reedbuck 0.8889 0.5614 0.6882 3696 57
hippopotamus 0.8592 0.8026 0.8299 3648 76
dikDik 0.5435 0.6849 0.6061 3540 73
koriBustard 0.7353 0.463 0.5682 3480 54
insectSpider 0.375 0.1915 0.2535 3080 47
jackal 0.4545 0.3191 0.375 3064 47
lionMale 0.6154 0.2222 0.3265 2352 36
serval 0.8889 0.2667 0.4103 1936 30
hare 0.9048 0.7037 0.7917 1760 27
mongoose 1.0 0.1429 0.25 1344 21
batEaredFox 1.0 0.1818 0.3077 960 11
porcupine 0.7143 0.3571 0.4762 960 14
vervetMonkey 0.25 0.0833 0.125 944 12
aardvark 0.3333 0.2 0.25 880 10
waterbuck 0.0 0.0 0.0 780 9
aardwolf 0.5 0.2222 0.3077 730 9
leopard 0.0 0.0 0.0 480 5
bushbuck 0.5 0.25 0.3333 340 4
vulture 0.0 0.0 0.0 320 4
duiker 0.0 0.0 0.0 290 3
hyenaStriped 0.0 0.0 0.0 290 3
cattle 0.0 0.0 0.0 270 3
reptiles 0.0 0.0 0.0 170 2
rhinoceros 0.3333 1.0 0.5 150 1
steenbok 0.0 0.0 0.0 150 1
honeyBadger 0.0 0.0 0.0 140 1
caracal 0.0 0.0 0.0 140 1
civet 0.0 0.0 0.0 110 1
wildcat 0.0 0.0 0.0 80 1
genet 0.0 0.0 0.0 80 1
zorilla 0.0 0.0 0.0 50 1
rodents 0.0 0.0 0.0 10 1

Macro 0.5053 0.3635 0.4012 231437 19377
Table 5: ROS Model (two-phase training) - Per Species Statistics.
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Species Precision Recall F1-score Count (Train) Count (Test)

wildebeest 0.8099 0.9558 0.8768 15000 6047
gazelleThomsons 0.91 0.9086 0.9093 15000 3795
zebra 0.8951 0.9154 0.9051 15000 4560
elephant 0.8598 0.7643 0.8093 4761 594
buffalo 0.8478 0.6367 0.7273 3920 490
warthog 0.7104 0.6159 0.6598 3730 466
giraffe 0.9144 0.6811 0.7807 3145 392
gazelleGrants 0.6383 0.3361 0.4404 2857 357
impala 0.727 0.691 0.7085 2746 343
otherBird 0.6703 0.4108 0.5094 2380 297
hartebeest 0.586 0.5661 0.5759 2368 295
hyenaSpotted 0.6622 0.5644 0.6094 2119 264
guineaFowl 0.8035 0.7354 0.768 1516 189
lionFemale 0.7265 0.5667 0.6367 1207 150
topi 0.7528 0.4467 0.5607 1204 150
baboon 0.8701 0.536 0.6634 1003 125
secretaryBird 0.9286 0.7222 0.8125 735 90
eland 0.9286 0.4333 0.5909 723 90
hippopotamus 0.8784 0.8553 0.8667 608 76
dikDik 0.6825 0.589 0.6324 590 73
ostrich 0.6364 0.2373 0.3457 478 59
cheetah 0.8333 0.3448 0.4878 470 58
reedbuck 0.85 0.5965 0.701 462 57
koriBustard 0.5472 0.537 0.5421 435 54
insectSpider 0.3143 0.234 0.2683 385 47
jackal 0.5 0.234 0.3188 383 47
lionMale 0.625 0.2778 0.3846 294 36
serval 0.6923 0.3 0.4186 242 30
hare 0.9048 0.7037 0.7917 220 27
mongoose 0.4286 0.2857 0.3429 168 21
porcupine 0.8571 0.4286 0.5714 120 14
vervetMonkey 0.3333 0.1667 0.2222 118 12
batEaredFox 0.6667 0.1818 0.2857 96 11
aardvark 0.6667 0.2 0.3077 88 10
waterbuck 0.0 0.0 0.0 78 9
aardwolf 1.0 0.1111 0.2 73 9
leopard 1.0 0.2 0.3333 48 5
bushbuck 0.0 0.0 0.0 34 4
vulture 0.0 0.0 0.0 32 4
duiker 0.0 0.0 0.0 29 3
hyenaStriped 0.0 0.0 0.0 29 3
cattle 0.0 0.0 0.0 27 3
reptiles 0.0 0.0 0.0 17 2
rhinoceros 1.0 1.0 1.0 15 1
steenbok 0.0 0.0 0.0 15 1
honeyBadger 0.0 0.0 0.0 14 1
caracal 0.0 0.0 0.0 14 1
civet 0.0 0.0 0.0 11 1
wildcat 0.0 0.0 0.0 8 1
genet 0.0 0.0 0.0 8 1
zorilla 0.0 0.0 0.0 5 1
rodents 0.0 0.0 0.0 1 1

Macro 0.5319 0.3648 0.4171 85029 19377
Table 6: RUS Model (two-phase training) - Per Species Statistics.
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Second, the results that we reported at the start of this chapter need to be interpreted with care. In this
paper, we aimed to treat each class equally. We did this by weighing our class-specific performance
metrics by class rather than by sample and by not excluding any classes, regardless of their size. As a
result, we obtained performance metrics that were more informative than the overall accuracy, which
is generally biased towards the majority class. However, given that there were many minority classes
with very few images in the training and the test set, high increases and decreases in class-specific
performances were sometimes observed, though they only represent predictions on a few images. The
performance for these extremely small classes mostly remained unchanged over the different models,
meaning that their influence on the results is limited. Nevertheless, these classes do contribute to
the values for the macro performance metrics and drive the differences of these values between
the models slightly towards zero. Therefore, both the macro performance metrics as well as the
class-specific performance metrics need to be interpreted cautiously.

Third, the above explained limitation could be partly mitigated by training the different models
several times, with a different random initialisation of the weights. This would allow us to report
average performances for the different models, which would make our results more robust. However,
the large size of the dataset implied long training times and prevented us from pursuing this preferred
strategy.
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