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Pre-Disaster Modeling of Damages to Civilization
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Model Usage
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Data

HAZARD TYPE LOCATION/NAME YEAR
EARTHQUAKE MEXi1co CITY 2017
SANTA Rosa, CA 2017
PINERY 2015
WILDFIRE PORTUGAL 2017
WOOLSEY, CA 2018
FLOOD MIDWEST, US 2019
NEPAL 2017
FLORENCE 2018
HARVEY 2017
HURRICANE MATTHEW 2016
MICHAEL 2018
JOPLIN, MO 2011
TORNADO MOORE, OK 2013
TUuSCALOOSA, AL 2011
PALU, INDONESIA 2018
TSUNAMI SUNDA, INDONESIA 2018
GUATEMALA 2018
VOLCANIC ERUPTION LOWER PUNA 2018

xBD Dataset. Gupta et al.



Hazard Level Metric

Hazard Levels as a function of attributes

HAZARD LEVEL
ATTRIBUTES

5 4 3 2 1
Fatality >10000 >1000 >100 >10 >1
Injury >100000 >10000 >1000 >100 >10
Land Impaired (km?) >500 >100 >50 >10 >1
Direct Damage (billion USD) >100 >10 >1 >0.1 >0.01
Indirect Damage (billion USD) >100 >10 >1 >0.1 >0.01
Water Disruption (days) >30 >14 >7 >3 >1
Energy Disruption (days) >30 >14 >7 >3 >1
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Qualitative flooding damage prediction (r =lat, y =Ing) without earlier disasters: Nepal



Results

MODEL LOSS-FUNCTION ACCURACY
PREDISMResNer-18 Cross-Entropy 78.38 %
PREDISMgesner 34 Cross-Entropy 79.24 %
Chen Cross-Entropy 59.50 %
post Ordinal Cross-Entropy 64.20 %

Prediction inference on non-disaster images
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Takeaways

PreDisM can help society prepare for future hazards amidst climate change
(stakeholders, residents, insurance, among others)

Future Work

1. Adding protective strategies will quantifiably minimize loss

2. Ablation studies on pre-disaster image sets spread across decades

3. Add crowd-sourced data to better process geographical features

©
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