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Abstract 

Waves are one of the greatest sources of renewable energy and are a promising 
resource to tackle climate challenges by decarbonizing energy generation. 
Lowering the Levelized Cost of Energy (LCOE) for wave energy converters is 
key to competitiveness with other forms of clean energy like wind and solar. Also, 
the complexity of control has gone up significantly with the state-of-the-art multi-
generator multi-legged industrial Wave Energy Converters (WEC). This paper 
introduces a Multi-Agent Reinforcement Learning controller (MARL) 
architecture that can handle these multiple objectives for LCOE, helping the 
increase in energy capture efficiency, boosting revenue, reducing structural stress 
to limit maintenance and operating cost, and adaptively and proactively protect 
the wave energy converter from catastrophic weather events, preserving 
investments and lowering effective capital cost. We use a MARL implementing 
proximal policy optimization (PPO) with various optimizations to help sustain the 
training convergence in the complex hyperplane. The MARL is able to better 
control the reactive forces of the generators on multiple tethers (legs) of WEC 
than the commonly deployed spring damper controller. The design for trust is 
implemented to assure the operation of WEC within a safe zone of mechanical 
compliance and guarantee mechanical integrity. This is achieved through reward 
shaping for multiple objectives of energy capture and penalty for harmful motions 
to minimize stress and lower the cost of maintenance. We achieved double-digit 
gains in energy capture efficiency across the waves of different principal 
frequencies over the baseline Spring Damper controller with the proposed MARL 
controllers. 

1 Introduction and Related Work 

Waves in the ocean are one of the more consistent and predictable sources of renewable energy, and 

the exploitable resource of coastal wave energy has been estimated to be over 2 TW, representing 

about 16% of the world energy consumption (Yusop et al. 2020).  Some significant challenges of 

deploying Wave Energy Converters(WEC) include variability of the wave time period, height, and 

directionality in offshore locations, leading to the complexity of capturing energy.  Also, WEC must 

be operated to minimize maintenance cost, and withstand rare but extreme wave conditions. 

1.1 Wave Energy Controller (WEC) 

The industrial WEC considered in this study is composed of a submerged cylindrical Buoyant 

Actuator (BA) similar in structure as in Figure 1. The BA is secured to the seabed with three mooring 

legs, each of which terminates on one of the three power take-offs (PTOs) located within the BA.  
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The electric generator of the PTO resists the extension of the mooring legs applying varying reactive 

force controlled by the RL controller, thereby generating electrical power. RL controllers need to 

optimize the timing and value of the PTO forces in relation to the wave excitation force, which is 

key to maximizing WEC energy capture and conversion efficiency. The different controllers 

currently deployed are damping control, spring damper control, latching control, and model 

predictive control with various degrees of success but fail to leverage multi-generator WECs well. 

1.2 Related work 

There has been recent work on applying RL to control simple one-legged WECs in different 

academic settings. (Anderlini et al., 2016, 2017, 2018, 2020) uses RL to obtain optimal reactive 

force for a two-body heaving point absorber with one degree of freedom. To our knowledge, RL 

has not been used to control advanced industrial multi-legged and multi- generator WECs 

with six degrees of freedom of motion, where the complexity and impact are even greater.  

2 Reinforcement learning design for WEC Multi-generator control 

The heterogeneity and complexity of WEC require a versatile controller like Multi-Agent 

Reinforcement Learning (MARL). The three legs and the generators mounted for each of the legs 

act differently, as they tend to generate different amounts of energy based on the orientation of the 

mechanical structure and wave directionality. Simpler one agent RL with multiple actions failed to 

control the WEC effectively. Hence, separate agents of MARL as shown in Figure 2, were used to 

control the reactive force of the generators on each of the three legs to learn the policy better. 

2.1 Environment state, action, and reward design 

For training, the state information is provided as a vector represented by s, where “e” represents the 

buoy position, “g” represents the tether extension, and “z” represents wave excitation.  All RL agents 

share the continuous observation space of position and wave.   

𝑠 =  [  𝑒  ė  ë  𝑔  ġ  𝑧  ż  ]𝑇 

The continuous action space for the individual RL agent is defined by the reactive force 𝑓𝑔𝑒𝑛(𝑖) for 

the controlled generator, where “i” represents the index for the agent.  

The reward is defined as, 

𝑅𝑒𝑤𝑎𝑟𝑑𝑖 = 𝛼. (𝑃𝑜𝑤𝑛(𝑖) +  𝜂𝑖 . 𝑃𝑜𝑡ℎ𝑒𝑟𝑠) + (1 − 𝛼)𝑦𝑎𝑤 

Where P represents the generated power defined by −𝑓𝑔𝑒𝑛 ∗ ė.  η is the hyperparameter for the team 

coefficient and α is the hyperparameter for yaw minimization of individual legs. 

2.2 Refinements to PPO for training stability and convergence 

For WEC, the Proximal Policy Optimization (PPO) for policy optimization performed better than 

other RL algorithms that we tried, like the DQN, Soft Actor-Critic, and A3C. We mitigated stalling 

convergence problem during training optimization with PPO design choices, data transformation, 

and tuning, a methodology that will also help tackle similar control problems for wind power.  We 

used LSTMs to leverage the time-series nature of the states and partial visibility into the oncoming 

wave excitation from the wave sensors. 

 

 
 

Figure 2: Multi-agent RL with 3 agents controlling 

the reactive forces of the generators on the 3 legs 

 
Figure 1:  Geometry of the three-tether wave energy 

converter: (a) 3D view, (b) PTO and motion with 6 

degrees of freedom, (c) WEC. (Sergiienko et al. 2020) 
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2.3 Cooperation vs Competition 

Though on the surface it looks like a cooperative MARL problem, the disparity in the power 

generated by individual legs and the complex nature of trade-off by one leg, to get additional power 

in other legs, makes the optimum solution a combination of co-operation and competition.  We 

added a signed hyperparameter “𝜂” of team coefficient to have an option for both positive and 

adversarial contribution of the power from other legs in the reward.   

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑃𝑜𝑤𝑛 + 𝜂 . 𝑃𝑜𝑡ℎ𝑒𝑟𝑠 

3 Design for Trust 

 
3.1 Maintenance mitigation and Yaw minimization with RL 

The rotational motion of the voluminous buoy (yaw) causes the tether connections to wear out faster 

and has potential maintenance implications.  The yaw motion is most significant in extreme cases 

of angled waves of 30 degrees. The penalty for the yaw movement is accounted in the reward 

shaping with a hyperparameter α for the three individual agents: 

𝑅𝑒𝑤𝑎𝑟𝑑 = (𝛼) 𝑝𝑜𝑤𝑒𝑟 + (1 − 𝛼) 𝑦𝑎𝑤  

where 𝛼 is a tunable yaw penalty hyperparameter, lesser the α, stronger the penalty. This led to 

significant improvements in yaw reduction resulting in much less displacement than the currently 

deployed spring damper (SD) controller, as seen in Figure 6. Also, adding the penalty for yaw to the 

reward improved power generation, as seen in Figure 7, likely because yaw minimization is simpler 

for RL to implement which resulted in more directed power in the PTO. This combined reward 

serves the dual purpose of energy capture maximization and stress minimization on the WEC to 

avoid costly maintenance in the open sea with submerged structures.   

3.2 Assured ML and enforcing preferred zone of operation 

In addition to reward shaping, we performed clipping on the RL action of generator reactive force 

to adhere to maximum and minimum tension in the spring extensions and the maximum reactive 

forces on the generator ensuring the preferred zone of operation maintaining integrity. 

3.3 WEC control with RL for survival condition 

For extreme and dangerous conditions of 7m high waves at an angle of 30°, the high yaw motion is 

mitigated with yaw penalty coupled with the LSTM model of the policy and the critic which can 

track to minimize yaw with long episode horizons.   

4 Results 

As the waves follow a characteristic spectrum, while evaluating power generation performance for 
each wave frequency, multiple waves from the Jonswap spectrum have been sampled for episodes 
lasting several minutes each. All results are based on a simulator, which replicates the CETO 6 

 
Figure 3: Comparison of Yaw movement between RL 

and the spring damper controllers for an episode 

with wave of height 2m and principal wave period of 

12s. Values are relative to maximum SD yaw. 

 
Figure 4: A comparison of Yaw for the RL and 

spring damper controllers on an extreme wave of 

height 7m and period 12s. The SD yaw for a wave of 

height 2m is also included as a reference. 
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industrial wave energy converter. For regular operation, we show results of median wave height of 
2m for the entire wave frequency spectrum spanning time periods of 6s to 16s. 

The power generated by the baseline spring damper (SD) controller with resonant spring constant 
and damping constant is used as a reference for evaluation to estimate the gain of energy capture by 
RL controllers as a percentage improvement. A direction of 0° indicates frontal waves with the wave-
front aligned with the front leg. For evaluation, we used the same seed for sampling waves for 
multiple episodes between RL and SD. 

Table 2 shows a significant improvement in captured power with RL controller over baseline spring 

damper (SD) controller for the entire frequency spectrum of ocean waves. For frontal waves (0°), 

the MARL performs on an average of 19.9% better than the spring damper over the entire frequency 

range of the waves, while for 30° angled waves, MARL controller performs 13.9% better than SD 

on an average. This shows that MARL is versatile for non-frontal angled waves. The variation of 

gains by the RL controller with wave time periods is because the spring damper is more resonantly 

tuned to the mechanical structure of the WEC for a certain frequency band. 

Table 3 shows that 3-agent MARL almost eliminated the yaw, which causes mechanical stress, 

while still making significant energy capture gains over baseline spring damper, as shown in Table 

2. Table 3 also shows that for natural disasters with surging waves of 7m height, the 3-agent MARL 

can almost eliminate yaw, just like it did for waves of normal height. 

The intuition is that the reactive forces for the generator on the legs will be proportional to the 

velocity of the tether as energy is captured working against this motion. However, the RL controller 

is fuzzy about it, implying that it takes a more long-term view and compromises short-term 

objectives for greater gains on energy capture at the more opportune segments of the wave cycles. 

5 Conclusions 

The proposed MARL controller yielded double-digit gains over the entire spectrum of waves 
boosting revenue opportunities with higher energy production. At the same time, it helped reduce 
mechanical stress, which impacts maintenance and operating costs, and actively mitigated adverse 
effects of high waves characteristic of disaster events, helping to preserve capital investment.  This 
MARL architecture with the mentioned objectives is applicable to other clean energy problems like 

 
 

Figure 6:  Yaw for RL as a % of Yaw for Spring 

Damper (SD) for normal (2m median height) and 

survival condition (7m height) waves at 30°  
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Figure 8: Generator Reactive force vs Velocity of 

tether: Back legs for frontal waves 

 
Figure 7: Generator Reactive force vs Velocity of 

tether:  Front leg for frontal waves. 

 
 

Figure 5:  % Power gain for of RL controller over 

Spring Damper for 2m high waves of different time 

periods  
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wind energy. The PPO refinements to stabilize training for global optima can be used in many other 
complex control applications with multiple entities to control.  
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