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Abstract

Waves are one of the greatest sources of renewable energy and are a promising
resource to tackle climate challenges by decarbonizing energy generation.
Lowering the Levelized Cost of Energy (LCOE) for wave energy converters is
key to competitiveness with other forms of clean energy like wind and solar. Also,
the complexity of control has gone up significantly with the state-of-the-art multi-
generator multi-legged industrial Wave Energy Converters (WEC). This paper
introduces a Multi-Agent Reinforcement Learning controller (MARL)
architecture that can handle these multiple objectives for LCOE, helping the
increase in energy capture efficiency, boosting revenue, reducing structural stress
to limit maintenance and operating cost, and adaptively and proactively protect
the wave energy converter from catastrophic weather events, preserving
investments and lowering effective capital cost. We use a MARL implementing
proximal policy optimization (PPO) with various optimizations to help sustain the
training convergence in the complex hyperplane. The MARL is able to better
control the reactive forces of the generators on multiple tethers (legs) of WEC
than the commonly deployed spring damper controller. The design for trust is
implemented to assure the operation of WEC within a safe zone of mechanical
compliance and guarantee mechanical integrity. This is achieved through reward
shaping for multiple objectives of energy capture and penalty for harmful motions
to minimize stress and lower the cost of maintenance. We achieved double-digit
gains in energy capture efficiency across the waves of different principal
frequencies over the baseline Spring Damper controller with the proposed MARL
controllers.

1 Introduction and Related Work

Waves in the ocean are one of the more consistent and predictable sources of renewable energy, and
the exploitable resource of coastal wave energy has been estimated to be over 2 TW, representing
about 16% of the world energy consumption (Yusop et al. 2020). Some significant challenges of
deploying Wave Energy Converters(WEC) include variability of the wave time period, height, and
directionality in offshore locations, leading to the complexity of capturing energy. Also, WEC must
be operated to minimize maintenance cost, and withstand rare but extreme wave conditions.

1.1 Wave Energy Controller (WEC)

The industrial WEC considered in this study is composed of a submerged cylindrical Buoyant
Actuator (BA) similar in structure as in Figure 1. The BA is secured to the seabed with three mooring
legs, each of which terminates on one of the three power take-offs (PTOs) located within the BA.
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Figure 1: Geometry of the three-tether wave energy
converter: (a) 3D view, (b) PTO and motion with 6 Figure 2: Multi-agent RL with 3 agents controlling

degrees of freedom, (c) WEC. (Sergiienko et al. 2020) the reactive forces of the generators on the 3 legs

The electric generator of the PTO resists the extension of the mooring legs applying varying reactive
force controlled by the RL controller, thereby generating electrical power. RL controllers need to
optimize the timing and value of the PTO forces in relation to the wave excitation force, which is
key to maximizing WEC energy capture and conversion efficiency. The different controllers
currently deployed are damping control, spring damper control, latching control, and model
predictive control with various degrees of success but fail to leverage multi-generator WECs well.

1.2 Related work

There has been recent work on applying RL to control simple one-legged WECs in different
academic settings. (Anderlini et al., 2016, 2017, 2018, 2020) uses RL to obtain optimal reactive
force for a two-body heaving point absorber with one degree of freedom. To our knowledge, RL
has not been used to control advanced industrial multi-legged and multi- generator WECs
with six degrees of freedom of motion, where the complexity and impact are even greater.

2 Reinforcement learning design for WEC Multi-generator control

The heterogeneity and complexity of WEC require a versatile controller like Multi-Agent
Reinforcement Learning (MARL). The three legs and the generators mounted for each of the legs
act differently, as they tend to generate different amounts of energy based on the orientation of the
mechanical structure and wave directionality. Simpler one agent RL with multiple actions failed to
control the WEC effectively. Hence, separate agents of MARL as shown in Figure 2, were used to
control the reactive force of the generators on each of the three legs to learn the policy better.

2.1 Environment state, action, and reward design

For training, the state information is provided as a vector represented by s, where “e” represents the
buoy position, “g” represents the tether extension, and “z” represents wave excitation. All RL agents
share the continuous observation space of position and wave.

s=Jeeéggzz]’
The continuous action space for the individual RL agent is defined by the reactive force f,, ;) for
the controlled generator, where “i” represents the index for the agent.

The reward is defined as,
Reward; = a. (Pown(i) + i Potners) + a- a)yaw

Where P represents the generated power defined by —f,., * €. n is the hyperparameter for the team
coefficient and a is the hyperparameter for yaw minimization of individual legs.

2.2 Refinements to PPO for training stability and convergence

For WEC, the Proximal Policy Optimization (PPO) for policy optimization performed better than
other RL algorithms that we tried, like the DQN, Soft Actor-Critic, and A3C. We mitigated stalling
convergence problem during training optimization with PPO design choices, data transformation,
and tuning, a methodology that will also help tackle similar control problems for wind power. We
used LSTMs to leverage the time-series nature of the states and partial visibility into the oncoming
wave excitation from the wave sensors.
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2.3 Cooperation vs Competition

Though on the surface it looks like a cooperative MARL problem, the disparity in the power
generated by individual legs and the complex nature of trade-off by one leg, to get additional power
in other legs, makes the optimum solution a combination of co-operation and competition. We
added a signed hyperparameter “n” of team coefficient to have an option for both positive and
adversarial contribution of the power from other legs in the reward.

Reward = P, + 1. Potners
3 Design for Trust

3.1 Maintenance mitigation and Yaw minimization with RL

The rotational motion of the voluminous buoy (yaw) causes the tether connections to wear out faster
and has potential maintenance implications. The yaw motion is most significant in extreme cases
of angled waves of 30 degrees. The penalty for the yaw movement is accounted in the reward
shaping with a hyperparameter o for the three individual agents:

Reward = (a) power + (1 — a) yaw

where « is a tunable yaw penalty hyperparameter, lesser the a, stronger the penalty. This led to
significant improvements in yaw reduction resulting in much less displacement than the currently
deployed spring damper (SD) controller, as seen in Figure 6. Also, adding the penalty for yaw to the
reward improved power generation, as seen in Figure 7, likely because yaw minimization is simpler
for RL to implement which resulted in more directed power in the PTO. This combined reward
serves the dual purpose of energy capture maximization and stress minimization on the WEC to
avoid costly maintenance in the open sea with submerged structures.

3.2 Assured ML and enforcing preferred zone of operation

In addition to reward shaping, we performed clipping on the RL action of generator reactive force
to adhere to maximum and minimum tension in the spring extensions and the maximum reactive
forces on the generator ensuring the preferred zone of operation maintaining integrity.

3.3 WEC control with RL for survival condition

For extreme and dangerous conditions of 7m high waves at an angle of 30°, the high yaw motion is
mitigated with yaw penalty coupled with the LSTM model of the policy and the critic which can
track to minimize yaw with long episode horizons.

4  Results

As the waves follow a characteristic spectrum, while evaluating power generation performance for
each wave frequency, multiple waves from the Jonswap spectrum have been sampled for episodes
lasting several minutes each. All results are based on a simulator, which replicates the CETO 6
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industrial wave energy converter. For regular operation, we show results of median wave height of
2m for the entire wave frequency spectrum spanning time periods of 6s to 16s.

The power generated by the baseline spring damper (SD) controller with resonant spring constant
and damping constant is used as a reference for evaluation to estimate the gain of energy capture by
RL controllers as a percentage improvement. A direction of 0° indicates frontal waves with the wave-
front aligned with the front leg. For evaluation, we used the same seed for sampling waves for
multiple episodes between RL and SD.

Table 2 shows a significant improvement in captured power with RL controller over baseline spring
damper (SD) controller for the entire frequency spectrum of ocean waves. For frontal waves (0°),
the MARL performs on an average of 19.9% better than the spring damper over the entire frequency
range of the waves, while for 30° angled waves, MARL controller performs 13.9% better than SD
on an average. This shows that MARL is versatile for non-frontal angled waves. The variation of
gains by the RL controller with wave time periods is because the spring damper is more resonantly
tuned to the mechanical structure of the WEC for a certain frequency band.

Table 3 shows that 3-agent MARL almost eliminated the yaw, which causes mechanical stress,
while still making significant energy capture gains over baseline spring damper, as shown in Table
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2. Table 3 also shows that for natural disasters with surging waves of 7m height, the 3-agent MARL
can almost eliminate yaw, just like it did for waves of normal height.

The intuition is that the reactive forces for the generator on the legs will be proportional to the
velocity of the tether as energy is captured working against this motion. However, the RL controller
is fuzzy about it, implying that it takes a more long-term view and compromises short-term
objectives for greater gains on energy capture at the more opportune segments of the wave cycles.

5 Conclusions

The proposed MARL controller yielded double-digit gains over the entire spectrum of waves
boosting revenue opportunities with higher energy production. At the same time, it helped reduce
mechanical stress, which impacts maintenance and operating costs, and actively mitigated adverse
effects of high waves characteristic of disaster events, helping to preserve capital investment. This
MARL architecture with the mentioned objectives is applicable to other clean energy problems like
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wind energy. The PPO refinements to stabilize training for global optima can be used in many other
complex control applications with multiple entities to control.
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