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Abstract

Greenhouse gases (GHGs), particularly carbon dioxide, are a key contributor to
climate change. The transportation sector makes up 35% of CO2 emissions in the
US and more than 70% of it is due to land transport. Previous work shows that sim-
ple driving interventions can significantly improve traffic flow on the road. Recent
work shows that 5% of vehicles using piecewise constant controllers, designed to
be compatible to the reaction times of human drivers, can prevent the formation of
stop-and-go traffic congestion on a single-lane circular track, thereby mitigating
land transportation emissions. Our work extends these results to consider more
extreme traffic settings, where traffic jams have already formed, and environments
with limited cooperation. We show that even with the added realism of these chal-
lenges, piecewise constant controllers, trained using deep reinforcement learning,
can essentially eliminate stop-and-go traffic when actions are held fixed for up to
5 seconds. Even up to 10-second action holds, such controllers show congestion
benefits over a human driving baseline. These findings are a stepping-stone for
near-term deployment of vehicle-based congestion mitigation.

1 Introduction

Greenhouse gases (GHGs) are gases that trap heat in the atmosphere and are a key contributor to
climate change. Carbon dioxide (CO2) makes up 80% of the United States GHG emissions in 2019.
In particular, the transportation sector, primarily due to the combustion of fossil fuels like diesel and
gasoline, causes significant CO2 emissions, making up about 35% of the total CO2 emissions and
29% of GHG emissions in 2019. The largest source of carbon dioxide emissions within transporation
is land transport, representing emissions from passenger cars and light-, medium-, and heavy-duty
trucks, which make up over 70% of the total CO2 emissions within the sector [1].

We focus on reducing total emissions by improving traffic flow on the road and reducing congestion
by designing vehicular controllers with deep reinforcement learning (RL). Previous work by Wu
et al. shows that it is possible to nearly eliminate congestion and increase average speeds by up
to 57% in idealized traffic settings using a small fraction of RL-controlled autonomous vehicles
(AVs) on the road [2]. Further work by Sridhar et al. shows that these results can be reproduced
with piecewise constant policies, a simplified class of reinforcement learning policies designed to
be executable by humans. This suggests that we can use RL to empower human drivers to execute
real-time congestion mitigation behavior in the near future, sidestepping the deployment obstacles
for autonomous vehicles [3].

We expand upon prior work by investigating how well piecewise constant policies work in more
complex settings by analyzing their potential to remove an existing traffic jam. In particular, our work
offers two contributions:

• We show that piecewise constant policies, trained using deep reinforcement learning, can
dissipate shock waves even after the formation of a severe traffic jam.
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• We show that piecewise constant policies are effective even with a local reward function,
rather than a global one, which indicates potential for settings with limited cooperation.

2 Related work and preliminaries

2.1 Potential climate impact

There is a long history of work showing that simple changes to driving styles can have a large impact
on emissions. For instance, the Environmental Protection Agency suggests avoiding unnecessary
idling in cars and buses [1]. Previous work by Barth et al. shows that even simple traffic management
strategies can significantly reduce emissions on the road. Based on typical traffic conditions in
Southern California, they show that CO2 emissions can be reduced by almost 20% by combining
strategies for congestion mitigation, speed management, and shock wave suppression to reduce
stop-and-go traffic [4]. Moreover, the Greek eco-driving program showed that bus drivers can
reduce average fuel consumption (correlated with emissions) by 10.2% through simple strategies like
maintaining steady speeds and anticipating traffic flows [5].

Advances in vehicle connectivity and control through RL allows us to take this a step further by
directly optimizing for complex objectives. Our work focuses on leveraging RL to control vehicles to
mitigate congestion and reduce overall emissions.

2.2 Policy class

We follow the model described in Sridhar et al. for formulating piecewise constant controllers.
That is, previous human factors studies show that shared control on the road (for example, with
semi-autonomous vehicles) can lead to increased safety risks [6, 7]. However, as discussed, studies
suggest that even simple changes to driving styles can significantly impact congestion. Thus, we
focus on a setting where human drivers are fully in control by designing policies that can be deployed
as a minimally intrusive real-time app (similar to Google Maps) which provides personalized driving
advice with minimal safety impacts [3].

In contrast with previous studies in human driver training, we focus on leveraging RL to provide
real-time advice to directly optimize for congestion rather than general strategies. This is particularly
compelling, since even simple driving strategies to reduce stop-and-go traffic waves show up to
7-12% emissions reductions [4]. We hypothesize that directly optimizing through RL techniques can
increase the potential impact, while leveraging human drivers would permit a near-term deployment.

However, in order to ensure the “advice” from RL is executable by human drivers, we require that a
new “suggestion” to the driver can only be provided every 5-8 seconds, due to human reaction times
as studied by Mok et al [7]. We model this in simulation by requiring each action to be maintained
for ∆ timesteps where ∆ is the action extension parameter. We first calculate performance using an
“autonomous vehicle” baseline policy which chooses a new action per timestep (0.1 seconds), with
∆ = 1. This implies that policies with ∆ = [50, 80] are structured to be executable by humans [3, 7].

2.3 Traffic jam formations

Previous work shows that piecewise constant policies with large action extensions can significantly
mitigate congestion in simplified traffic settings [3]. Generally, traffic jams form due to small
fluctuations in the movement of vehicles. If there is a large gap between vehicles, the fluctuation
typically disappears and the vehicles remain in free flow, where cars are moving at a high velocity.
However, when the traffic is dense enough, small fluctuations can compound, leading to cars clustering.
These small fluctuations can grow until finally several vehicles are forced to stop completely, creating
a stop-and-go wave [8].

Previous work by Sridhar et al. shows that a single controlled vehicle following piecewise constant
policies with ∆ ≤ 140 can successfully mitigate the buildup of traffic waves in the single-lane circular
track setting with 21 simulated human drivers where small fluctuations are initially present [3]. We
extend this work to a setting where the small fluctuations have already caused a stop-and-go traffic
wave to develop. This is a much harder setting, akin to reducing congestion after a traffic jam has
built up, compared to the original where the initial shock waves have just started.
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Figure 1: Time-space diagrams for varying levels of traffic jams. Each line represents a vehicle (with a
human driver), where position is plotted on the y-axis and time in the x-axis. When a vehicle reaches position
250, it re-enters at position 0, since we are in a circular track environment. The end of the warmup period is
marked by the blue line at 1200 time steps. Left: In the low-severity setting, we see mild disturbances build
into stop-and-go waves after approximately 3000 timesteps. Right: In the high-severity setting, we observe
significant stop-and-go traffic waves by 1200 time steps.

3 Problem

In this work, we study piecewise constant controllers to understand the potential of leveraging human
drivers to mitigate congestion, particularly in severe settings. We consider the classic single-lane
circular track. We integrate a single RL-controlled agent after the formation of stop-and-go traffic
waves, and we train piecewise constant policies. Furthermore, we use local reward functions to
explore congestion impacts with limited cooperation. The research questions we explore are: Under
such severe traffic conditions, to what extent can piecewise constant controllers mitigate congestion?
Is the regime of effectiveness within the limits of human reaction times?

4 Experimental results

4.1 Traffic severity

We can describe the severity of a traffic jam by analyzing the shock waves that build when only
human drivers are present. We model human drivers using the Intelligent Driver Model (IDM) [9],
a widely-used calibrated human driving model. In the original setting, described in the work of
Sridhar et al., cars are initialized with random spacing around the track to create some initial small
fluctuations [3]. With a warmup period (where the RL agent is also following IDM) of 1200 timesteps,
we see small shock waves that can multiply in the human baseline setting into stop-and-go traffic, as
seen in the left of Figure 1. However, by the end of the warmup period, the traffic waves are small.

In our setting, we start with a deterministic uneven spacing of the cars, where cars start out in two
distinct clusters. This setup is designed for traffic jams to build faster. After a warmup period of 1200
steps, as seen in the right of Figure 1, we observe that strong traffic waves have developed. Thus, in
our setting, the RL-controlled agent must solve the problem of smoothing a fully-formed traffic jam
rather than much smaller shock waves, which are typically easier to equalize.

4.2 Experiments

We use the Flow framework for our vehicle control experiments [2]. In particular, we use the canonical
single-lane circular track described by Sugiyama et al [8]. There are 22 vehicles on a 250m track and
each driver in the track follows IDM. As described in Figure 1, we observe traffic waves build up
without the presence of a controlled vehicle. We define the human baseline velocity as the average
velocity on the track when no AVs are present. We note that the human driving baseline velocity is
3.45 m/s which is lower than the baseline of 3.6 m/s presented by Sridhar et al., most likely due to
the increased severity of our traffic setting [3].

We then replace a single human driver with a learning agent (vehicle) on the track, constrained
by a varying ∆. Every ∆ timesteps, this agent is provided with a target acceleration. The agent
translates this acceleration into a target speed and accelerates to that speed following IDM. Due to
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Figure 2: Left: Average velocity in evaluation for varying action extension parameters, evaluated over 50 trials
for each ∆. We observe average speeds above 4.2 for ∆ ≤ 50 and average speeds above 4.0 for ∆ ≤ 100. We
see comparable performance to past work for ∆ ≤ 50 [3], even with the harder traffic setting. Right: Traffic
smoothing with a singular agent (shown in red) with ∆ = 80. We observe traffic waves build in the first 1200
steps, then equalize due to the agent’s behavior. We note that there are still minor waves near timestep 6000
since the agent cannot completely smooth the traffic.

safety considerations, the target speed is not always reached, thus modeling a relaxation of the exact
piecewise constant requirements of the policy to be more representative of human behavior.

The learning agent observes its own speed, the speed of the preceding car, and the headway to the
preceding car. We use a local reward function, which consists of the agent’s own velocity [3]. The
agent is trained for a horizon of 8000 steps, with 1200 warmup steps to allow the traffic waves to
build. We train our agents using TRPO, with and without a critic [10]. We experiment with reward
shaping where we penalize sharp changes in acceleration in order to discourage stop-and-go traffic
waves. We train each setting for varying values of ∆ and the results from the best model are described
in the left of Figure 2.

First, we note that with ∆ = 1, we can smooth out traffic waves completely, with an average velocity
of 4.3 m/s, which is close to the equilibrium velocity in the ring. We observe that up to ∆ = 100,
we can consistently outperform the human baseline, even in the severe traffic jam settings. This is
seen in the right of Figure 2 where an agent following a piecewise constant policy with ∆ = 80 is
mostly able to smooth out heavy traffic waves over the horizon. Finally, up to ∆ = 50, we see that
our average velocity is above 4.2, which is similar to the results shown by Sridhar et al [3].

5 Conclusions and discussion

In this work, we analyzed piecewise constant policies to study their performance in realistic traffic
settings. We extend the work of Sridhar et al. to more complex settings by increasing the difficulty
of the traffic flow problem and by reducing the sensing requirements [3]. That is, we focus on a
single-lane circular track network where stop-and-go traffic waves have fully formed before the agent
is deployed, representing situations where congestion is not predicted ahead of time. Moreover, we
simplify the reward function to only use the RL vehicle’s local observations.

We show that piecewise constant policies still work well under the increased constraints. In fact, for
∆ ≤ 100 (10 seconds), the policies outperform the human baseline. Based on previous literature, we
believe that ∆ ∈ [50, 80] is large enough for the policies to be executable by humans [3, 7]. Studies
in Southern California suggest that the elimination of such stop-and-go traffic could contribute to a
7-12% reduction in emissions, which could be a major climate change intervention [4]. Finally, we
note that technological improvements in system efficiency, such as congestion mitigation, should be
considered jointly with policy and regulation, in order to appropriately manage rebound effects.

In the future, we would like to experiment with increasingly complex traffic settings, including
highway bottleneck and merging scenarios. We hypothesize that such robust simulation results,
accompanied by user studies to evaluate the safety of piecewise constant policies would allow for a
real-world deployment in the near future.
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