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Introduction
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® Water-related disasters (floods and droughts) account for an
overwhelming 90% of all-natural disasters globally and are expected
to increase due to climate change [Aich et al., 2016].
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Figure 1: Map of Ansongo-Niamey basin
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Methodology
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Methods

e Data preprocessing (precipitation, temperature and discharge
from 1981 to 2010)

® Hyperparameter optimization using Scikit-Optimize

® Model training and testing using TensorFlow
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Figure 2: Discharge predictions of LSTM and GRU models at Niamey
from June 2006 to December 2010
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Results and Discussion
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Discussion

Table 1: Performance of hydrological models at Niamey

Model Paper Performance
LSTM This article NSE: 0.933
GRU This article NSE: 0.935
Niger-HYPE [Andersson et al., 2017] NSE: 0.72
ISBA-TRIP  [Casse, 2015] NSE: 0.93
SWAT [Pomeon et al., 2018] KGE: 0-0.5
HGS [Boko et al., 2020] Good
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Conclusion

® The DL models trained and evaluated were able to achieve
high accuracy and efficiency while maintaining a low
computational cost and using fewer data.

® As expected, the GRU performed slightly better than the
LSTM.

® The trained DL models matched and even outperformed
classical hydrological models at predicting historical river flow
at Niamey.
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Conclusion and Perspectives
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Perspectives

® The extreme discharge could have been better simulated

— if additional variables were added to the model (data-centric
approach) or

— if the model was tweaked in a manner that predicts easier
extreme events (model-centric approach).

® Regionalize a DL model over West Africa to simulate
ungauged catchments
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