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Abstract

Efficient climate change monitoring and modeling rely on high-quality geospatial
and environmental datasets. Due to limitations in technical capabilities or resources,
the acquisition of high-quality data for many environmental disciplines is costly.
Digital Elevation Model (DEM) datasets are such examples whereas their low-
resolution versions are widely available, high-resolution ones are scarce. In an
effort to rectify this problem, we propose and assess an EfficientNetV2 based
model. The proposed model increases the spatial resolution of DEMs up to 16
times without additional information.

1 Introduction

Digital Elevation Models (DEMs) are elevation-based representations of terrain surfaces. In the
environment and climate change literature, DEMs have been used in variety of research problems
over the years. That includes but is not limited to flood risk and hazard mapping (1), stream network
extraction (2), understanding urban characteristics (3), surface texture analysis (4), and drainage
network development (5). Furthermore, in flood mapping, using higher resolution DEMs yields
better results in terms of accuracy of the constructed flood map when compared to ones sourced from
low-resolution DEMs (6).

Water resource management and hydrological modeling using physically-based or data-driven ap-
proaches (7) need not only DEMs but high-resolution DEMs for accurate hydrological predictions
(8). Web-based tools for efficient disaster management, recovery, and response such as decision
support (9), and data analytics (10) systems that share climate change-related communication rely on
high-quality DEM. Consequently, more efficient hydrological modeling for better climate change
monitoring and modeling would highly benefit from higher resolution DEMs.

LiDAR (light detection and ranging) is the predominant way of generating high-resolution DEMs.
LiDAR is an optical remote-sensing technique that estimates the distance between the sensor and
the object, as well as the object’s reflected energy. Even though it has been widely utilized and
commonplace, the DEM production using LiDAR is still resource-intensive in terms of cost, time
and computing power. The cost of the process increases drastically as the resolution of the product
increases. Consequently, LiDAR products are often satellite based and low resolution, and as high-
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resolution ones are costly and harder to produce, they remain scarce. One way to increase the
resolution of existing low-resolution DEMs produced by LiDAR without substantially increasing
cost is to utilize data-driven approaches.

1.1 Related Work

Literature on increasing the DEM resolution with deep learning is limited. (11) provides a proof-of-
concept super-resolution approach for DEMs using convolutional neural networks. (12) presents a
new approach taking advantage of the state-of-the-art computer vision literature using residual blocks.
Furthermore, (13) explorers the power of GANs to increase the resolution up to 16x times.

Being a 2D tensor, a DEM is a data structure that many approaches in computer vision could be applied
on (11; 12; 14). Thus, the literature on image super-resolution is of importance for this study. There
are many studies that employ various neural network architectures for single image super-resolution.
(15) sets a milestone in super-resolution of images using CNNs while (16; 17; 18) advances the
effort to better accuracies. In another attempt, (19) proposes using Generative Adversarial Networks
(GANs) in image super-resolution and many others (20; 21) alter the approach with different network
architectures for both generator and discriminator for more efficiency.

The recent studies on computer vision including super-resolution not only focus on the performance
of the models, but they aim to create more efficient networks. Various manuscripts developed
new methods and lightweight architectures such as post-upsampling or recursive learning (22). In
accordance with these efforts, EfficientNet was introduced to find the balance between the network’s
depth, width, and resolution to achieve better performance with smaller networks and it provided
strong results on ImageNet and CIFAR/Flower/Cars (23; 24) datasets.

To provide a step towards better climate change monitoring and modeling, in this paper, the power
of EfficientNetV2 (24) is harnessed to create a deep neural network model that aims to convert
low-resolution DEMs into high-resolution DEMs up to 16x higher resolution without the need
for additional data. Utilization of EfficientNetV2 was done by changing the core element of it,
MobileNets (25). MobileNet is developed and improved by Google for mobile and embedded
vision applications such as object detection or fine-grain classification (26; 25; 27). MobileNet
introduced depth-wise separable convolutions to replace traditional convolutions (26). Beyond that,
MobileNetV2 used the linear bottleneck and inverted residual architecture to provide a better efficient
network than the previous model (25). MobileNetV3 combines MobileNetV2 with the squeeze
and excite unit in the residual layers with different activation functions (27). To determine the
efficiency of the proposed EfficientNetV2 based network, its performance is compared to that of
classic interpolation methods such as bicubic and bilinear alongside artificial neural network-based
models, and preliminary results are shared.

The rest of this paper is structured as follows; in section 2, the dataset used in this work is introduced
and the overview of the methodology is presented. Then in section 3, the preliminary results for
compared methods and the proposed neural network are presented and discussed. Finally, in section
4, we summarize the outcomes.

Table 1: Statistical Summary of Dataset

Avg. Elevation (m) Min. Elevation (m) Max. Elevation (m)

Training 653.1 205.7 984.9
Test 621.7 230.0 982.7

2 Method

2.1 Data

The data utilized in this work was acquired from the North Carolina Floodplain Mapping Program. It
is a state program that allows the public to download various data types such as bare earth DEMs or
flood zones for North Carolina through the web interface. The dataset we collected for this study
covers a total area of 732 km2 from two different counties (i.e., Wake and Guilford) in North Carolina,
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United States. A total area of 590 km2 is used as the training set, and the remainder of the dataset,
which covers a total area of 142 km2, as the test set. Each of the used DEMs was collected at a
spacing of approximately 2 points per square meter. In the experiments, DEMs with a resolution
of 3 feet and 50 feet are used as high-resolution and low-resolution examples, respectively. The
North Carolina Floodplain Mapping Program supplied the data as tiles. Each of the high-resolution
DEM tiles is delivered as 1600x1600 data points and the low-resolution DEM tiles as 100x100
data points. In the preprocessing phase, high-resolution DEMs were split into 400×400 data points
and low-resolution DEMs were split into 25×25 data points to decrease the computational need. In
addition to the fragmentation process, DEMs with missing values are discarded from the dataset prior
to the training. Table 1 shows the average, minimum and maximum elevation values for both datasets.

2.2 Neural Network

As mentioned before, the base for this work is EfficientNetV2. In order to create a model that
carries out the DEM super-resolution task that is converting a 25x25 tensor into a 400x400 one, we
alter EfficientNetV2 by modifying its core component, MobileNets, which was not designed with
a super-resolution task in mind. Our model takes a 50 feet DEM as low-resolution data and passes
it to a convolution layer with 24 feature maps prior to feeding it to multiple MobileNetV3 blocks.
After that, two sub-pixel convolutional layers (28) are used to upscale to reach desired high resolution
product. In the end, the output of upsampling blocks is summed up with an interpolated version of
low-resolution input data, then the summation is fed to a final convolutional layer which in turn gives
the output of the network, a 3 feet high-resolution DEM. The visual representation of our model is
provided in Figure 1.

Figure 1: Architecture of Proposed Method

In the proposed model, we modify the MobileNetV3 blocks to use for super-resolution tasks. Similar
to prior studies in image super-resolution super-resolution (21; 29), batch normalization layers
were removed from MobileNetV3 blocks in accordance with the experimental results on model
development. In addition, h-swish activation layers were replaced with LeakyReLU activation
functions. Contrary to MobileNetV3 and EfficientNetV2, in our model, input resolutions are not
changed until the upsampling blocks, similarly to other super-resolution models (19; 21). The
remaining parts of the MobileNetV3 are the same as the original implementation including SE blocks.
For more information about MobileNetV3’s implementation details, please refer to (24; 27). For the
cardinality and design of the MobileNetV3 blocks in this work, we followed the same network design
with EfficientNetV2-S architecture as shown in Table 2.

Table 2: MobileNet blocks in our model

Block#1 Block#2 Block#3 Block#4 Block#5 Block#6

# of Channels 24 48 64 128 160 256
Expansion ratio 1 4 4 4 6 6
# of Layers 2 4 4 6 9 15

For training, Adam (30) was used as the optimizer with a learning rate of 0.001, and the MSE loss was
used as the cost function. The network is implemented with Pytorch 1.9 (31) and ReduceLROnPlateau
from Pytorch is used as the scheduler to reduce the learning rate when there are no improvements on
model loss for 10 consecutive epochs. The training was done on NVIDIA Titan V GPUs.
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Table 3: The Performance Comparison of Different Methods as MSE in meters

Bicubic Bilinear D-SRCNN DPGN D-SRGAN EfficientNetV2-DEM

Training 0.968 1.141 0.900 0.758 0.766 0.625
Test 0.946 1.124 0.872 0.803 0.753 0.640

3 Results

It is a typical practice to employ MSE to evaluate the performance of proposed approaches in DEM
super-resolution (11; 14; 32). Considering that DEM provides height values for the corresponding
area, it is reasonable to utilize a metric such as MSE that is representative of quantitative measure-
ments in order to better understand how well a method performs. Consequently, we used MSE
scores to compare our methods with various approaches. Classical approaches such as bicubic and
bilinear interpolations are widely used to show the comparable performance of proposed DEM super-
resolution methodologies and we also report their performance over our dataset to form a baseline.
Bicubic and bilinear interpolation implementations in scikit-image library (33) were employed for
this purpose. In addition to classical approaches, we compared our results with three deep learning
studies. D-SRCNN (11) is a CNN-based method for increasing the resolution of a DEM with a similar
architecture to SRCNN (15). DPGN (12) is also a CNN-based model that uses skip-connections
and residual blocks to increase DEM resolution. Lastly, D-SRGAN (13), which is a generative
adversarial network that aims to increase the resolution up to 4x scale factors. Table 3 shows the mean
squared errors of different methods on both training and test datasets for elevation data. According to
experiment results, all neural networks outperform the classical methods, but our method, noted as
EfficientNetV2-DEM, gives the best results with a significant margin on both datasets.

The error distribution of the proposed network on testing data is also provided in Figure 2. The mean,
median, and standard deviation of errors in testing data for EfficientNetV2-DEM are 0.64, 0.54, and
0.42 m, respectively. According to experiment results, %76 and %80 of all predicted values are within
plus or minus one standard deviation from the mean on training and test dataset, respectively, which
shows that the performance of the model we propose is robust with a limited number of outliers.

Figure 2: Error Distribution of EfficientNetV2-DEM Model on Test Dataset

4 Conclusions

In this study, we presented an EfficientNetV2 based DEM super-resolution model that increases
the spatial resolution of DEMs up to 16 times without the need for any additional information.
The efficacy of the proposed network is shown by comparing its performance with conventional
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interpolation methods and artificial neural network-based studies. As it was briefly discussed in the
Results section over the preliminary results, the proposed network shows promise by surpassing the
compared methods by a significant margin. Considering the EfficientNetV2 based network’s training
times are manageable, we believe it provides a comparable alternative to both classical and machine
learning-based methods.

As future directions for this approach, since we provided the proof of concept here, we aim to build
a larger network to train it with larger DEM datasets. To create a neural network that grasps the
correlation between low-resolution and high-resolution DEMs better, another future aspect is to create
a custom cost function instead of using MSE.

As addressing climate change needs better datasets (34; 35), we believe this study, along with its
future perspectives, provides a great starting point in an effort to improve environmental datasets.
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