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Abstract

Snow-layer segmentation and classification is an essential diagnostic task for a
wide variety of cryospheric science and climate research applications. To this
end a Snow Micro Pen (SMP) can be used - a portable high-resolution snow
penetrometer. However, the penetration-force measurements of the SMP must be
labeled manually, which is a time-intensive task that requires training and becomes
infeasible for large datasets. Here, we evaluate how well machine learning models
can automatically segment and classify SMP profiles. Fourteen different models
are trained on the MOSAiC SMP dataset, a unique and large SMP dataset of
snow on Arctic sea-ice profiles. Depending on the user’s task and needs, the long
short-term memory neural network and the random forests are performing the
best. The findings presented here facilitate and accelerate SMP data analysis and
in consequence, help scientists to analyze the effects of climate change on the
cryosphere more efficiently.

1 Introduction

Snow classification is an essential tool for polar science, cryospheric science, and climate change
research. Snow layer segmentation and classification put forth knowledge about the atmospheric
conditions a snowpack has experienced. This knowledge helps to discern fundamental snow and
climate mechanisms in the Arctic and to analyze polar tipping points.

Traditionally, these snow stratigraphy measurements are made in snow pits - pits dug manually,
vertically into snowpacks -, requiring trained operators and a substantial time commitment. The
Snow Micro Pen (SMP), a portable high-resolution snow penetrometer [Johnson and Schneebeli,
1998], has been demonstrated as a capable tool for rapid snow grain classification and layer type
segmentation. The resulting SMP profiles must be manually labeled, which requires time, training
and becomes infeasible for large datasets. Machine learning (ML) algorithms could be used to
automate this process. As a consequence this would 1) immensely accelerate the SMP analysis, 2)
enable the analysis of large datasets and 3) make the training of interdisciplinary scientists in snow
type categorization obsolete.

In previous work a nearest neighbor approach [Satyawali et al., 2009], random forests (RFs) [Havens
et al., 2012] and support vector machines (SVMs) [King et al., 2020] were used to achieve an
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Figure 1: Overview of all used SMP profiles, where each bar is a profile (top of bar equals snow
surface) and each color a grain type. The figure within shows a typical SMP signal. The x-axis of the
SMP profile indicates how far the measurement tip has moved into the snowpack, and the y-axis is
the measured penetration force.

automatic snow grain classification under certain conditions. In contrast to previous work, the models
provided in this work, should 1) automate both classification and segmentation, 2) not include any
additional measurements except from the SMP signals, 3) classify at least six grain types, 4) not
include knowledge-based expert rules, 4) provide a high-resolution of 1 mm layers and 5) should
be able to operate on large, unfiltered, real-world SMP datasets. If such a unified approach could
actually be used in the field to analyze vast amounts of SMP profiles, it would be the first of its kind
and a major enhancement for SMP signal interpretation.

In order to achieve such an automation, this paper compares different ML algorithms of the supervised
and semi-supervised learning domain, which were trained to automatically segment and classify SMP
profiles collected during the MOSAiC expedition [Shupe et al., 2020].

2 Methods

2.1 Data

The MOSAiC dataset is a unique and extensive dataset characterizing seasonal and spatial variation
of snow on the central Arctic sea-ice [Macfarlane et al., 2021]. From a total of 3680 profiles, 164
collected between January and May 2020 were labeled by a snow expert (Figure 1). The manual
labelling is achieved by assigning snow grain markers to a SMP signal based solely on the stratigraphy,
frequency, strength, and gradient of the force signal. The properties of the different snow grain
types are described in Fierz et al. [2009]. The labeled and unlabeled profiles were preprocessed and
prepared for the models (Appendix D). The resulting dataset is not easy to classify due to its high
complexity, extreme class imbalance and label uncertainty. The raw data becomes publicly available
on 1st January 2023 on the open MCS or PANGEA archives [Macfarlane et al., 2021]. Before that
the data is available upon request.

2.2 Models

The overall task for the models is to produce a segmented SMP signal with a grain-type assignment
for each segment. To do so, the models used here first classify each data point of the SMP signal and
subsequently summarize the classified points to distinct snow layers. We chose models from different
learning domains - supervised and semi-supervised learning -, and task domains - independent
classification and sequence labeling - to diversify the model search and provide a more detailed model
overview. The code to train and evaluate the models is available online.2 As a simple baseline the
majority vote classifier is employed, predicting always the majority class.

2https://github.com/liellnima/snowdragon
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As semi-supervised classifiers three different approaches are implemented. The first approach
includes three cluster-then-predict models [Soni and Mathai, 2015, Trivedi et al., 2015] that all
use a majority vote classifier within the clusters, but differ in the clustering algorithm: K-means
clustering [Forgy, 1965, Lloyd, 1982], Gaussian mixture modeling, or Bayesian Gaussian mixture
modeling. Furthermore, a self-trained classifier [Yarowsky, 1995] based on a balanced random forest
is employed, and a graph-based algorithm propagating labels to unlabeled data points, called label
propagation [Zhu and Ghahramani, 2002].3

Five different supervised classifiers are tested. This includes both 1) random forest (RF) [Ho, 1995,
Breiman, 2001] and 2) balanced random forests [Chen et al., 2004], which are ensembles of diversified
decision trees. 3) Support vector machines (SVM) [Cortes and Vapnik, 1995] construct hyperplanes
in a high-dimensional space to separate classes from each other. 4) K-nearest neighbors (KNN) [Fix
and Hodges Jr, 1952, Cover and Hart, 1967] is a local classification approach that compares samples
to its nearest neighbouring data points during prediction. And lastly, 5) an easy ensemble classifier
[Liu et al., 2008], an ensemble of balanced adaptive boosting classifiers.

For the supervised sequence-labelling models three different artificial neural network (ANN) architec-
tures are employed: 1) Long short-term memories (LSTMs) [Hochreiter and Schmidhuber, 1997] are
recurrent neural network (RNN) architectures that have different memory cells to forget, store and
retrieve information necessary for classification decisions. 2) Bidirectional long short-term memories
(BLSTMs) [Schuster and Paliwal, 1997] consist of two independent LSTMs processing time-series
both forwards and backwards. 3) An encoder-decoder network [Cho et al., 2014], consisting of
RNNs, where time-series information is encoded into a vector and decoded during classification. An
attention mechanism was added to the encoder-decoder network to improve the model’s ability to
learn long-term dependencies [Bahdanau et al., 2014].4

2.3 Evaluation

The evaluation of the different models is based on balanced accuracy, absolute accuracy, weighted
precision, F1 score, ROC AUC, log loss, fitting and scoring time. Qualitative evaluations such as
the “smoothness” of the predicted SMP profiles are considered as well and can be found online. The
results presented in the following section cannot be compared directly with results from Satyawali
et al. [2009], Havens et al. [2012] and King et al. [2020], because they use different and fewer snow
grain types and provide their algorithms with additional snow pit data or use manually pre-segmented
profiles. For comparability reasons, the models used in previous work are also implemented in this
work. For specifications about the models and experimental setup refer to Appendix C.

3 Results

All models were able to outperform the majority vote baseline (Appendix A) in all metrics except
fitting and scoring time. Among the semi-supervised models the self-trained classifier and the label-
propagation performed best, while the cluster-then-predict models need further improvements, since
they score as low as the baseline for the labels depth hoar wind-packed and precipitation particles
(Figure 2). The label-propagation algorithm produces very fragmented predictions, which stands in
contrast to the desired smooth, expert-like predictions. This makes the self-trainer the preferred model
of the comparatively weak semi-supervised model group. Of all supervised classifiers, the RF, the
balanced RF and the SVM have similar high scores, making it possible to choose among those three
models. The balanced RF even achieves the highest balanced accuracy of all models (0.672), however,
the RF does not overestimate the minority classes so strongly and produces more accurate overall
predictions (0.726). The KNN model and the easy ensemble cannot keep up with the performances of
the RFs and the SVM (Appendix A). The ANNs have the highest performance values for all metrics,
except balanced accuracy, fitting and scoring time (Appendix A). The encoder-decoder achieves of
all models the best absolute accuracy with 0.78. Its performance scores are slightly better than the
LSTM’s, but the LSTM is more than 8 times faster and much robuster to hyperparameter tuning.
In contrast to the other model groups, the performances of all three ANNs depend strongly on the
hyperparameter tuning. In summary, the LSTM and the encoder-decoder network show the highest
performance values of all models, followed by the RFs, the SVM and the self-trained classifier.

3Refer to Bishop [2006] for detailled explanations about several of these algorithms.
4Refer to Jurafsky and Martin [2021] for detailled explanations.
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Figure 2: Class accuracy values of each model. The x-axis represents the snow grain types (descending
with number of examples in the label dataset), the y-axis shows accuracy, and the colors the models
(yellow-red: semi-supervised, purple-blue: supervised, green: ANNs). The label “rare” is omitted.

Label-wise, the majority class "rounded grains wind-packed" is classified very well by all models,
depth hoar wind packed and indurated are difficult to predict for all models, depth hoar and its melted
form are somewhat difficult to predict for most models, and the class “precipitation particles” yields
accuracy performances spread along the complete range (Figure 2). The balanced RF and SVMs are
especially good at predicting rare classes. The ANNs, in contrast, are, of all models, scoring highest
for the three largest classes. There are a few models which score consistently high for different labels,
such as the LSTM, BLSTM and the RF.

4 Discussion

There is no model that outperforms all the others, instead several models perform well under different
circumstances. The underwhelming cluster-then-predict models could be improved substantially by
using a different predictor than the majority vote within the clusters. However, by outperforming
the majority vote classifier, they showed that clustering the data exhibits additional information.
The ANNs show the most expert-like predictions and the best overall performances. The main
reason for that might be that they interpret the data truly as time-series and can access (long-term)
time dependencies which the other models cannot. For this reason, models interpreting the task as
label-sequencing task might generally perform better than time-independent models.

The code provided alongside this paper enables SMP users from different fields for the first time to
automatically segment and classify snow pack profiles. A practitioners guide on how to choose a
suitable model is provided in Appendix B. Based on the findings described here, a SMP classification
and segmentation tool could be developed and integrated into the existing SMP analysis package
snowmicropyn.5 Such a tool would make knowledge about snowpacks easier and faster accessible for
all scientists and would thus facilitate climate change research. An immediate impact of this project is
that the connected analysis of the MOSAiC SMP dataset makes the retrieval of essential information
about the state of the Arctic cryosphere possible. This way, it enables climate and cryospheric
scientists to understand the effect of climate change on our planet’s cryosphere and especially the
Arctic better.

The most important limitation of the models is that the classification might never be able to reach
accuracy close to 100% because of the grain types’ nature and the subjectivity of the manual labelling
process. Due to snow metamorphism, where snow grains are transforming into others, snow classes
are not discrete, but more of a continuous nature. Transforming, overlapping and internal subclasses
of the grain labels impede the classification and make it difficult for experts to find clear labels and
consequently the training labels are afflicted with high uncertainty.

5https://snowmicropyn.readthedocs.io/en/latest/
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5 Conclusion

This work shows that an automatic classification and segmentation of SMP profiles is possible, even
when real-world, unfiltered SMP profiles are used. Depending on the classification needs, and the
temporal and computational resources at hand, the (balanced) RF and the LSTM are especially
well suited for automatic SMP analysis. In future studies, we would like to test the generalization
capabilities of the models by analyzing their predictions for MOSAiC SMP profiles from a different
season (e.g. melting season). The MOSAiC dataset provides humanity for the first time in history
with a large amount of detailed data about the Arctic’s condition. The ML-driven approach used
here to analyze SMP profiles will be one of many methods to make the knowledge behind the data
accessible - knowledge that is essential to understanding and mitigating climate change impacts.
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A Appendix

Model Absolute
Accuracy

Balanced
Accuracy

Precision F1
Score

ROC
AUC

Log
Loss

Fitting
Time

Scoring
Time

Majority Vote 0.390 0.143 0.152 0.219 nan nan 0.001 < 10−3

K-means 0.620 0.440 0.609 0.612 nan nan 384.7 0.010
GMM 0.649 0.363 0.586 0.612 nan nan 151.3 0.008

BGMM 0.646 0.382 0.626 0.625 nan nan 224.8 0.009
Self trainer 0.692 0.670 0.736 0.708 0.918 0.840 19.3 0.292

Label propagation 0.714 0.538 0.717 0.712 0.916 1.499 10.5 3.352

RF 0.726 0.596 0.731 0.726 0.927 0.704 72.2 0.965
Balanced RF 0.696 0.672 0.741 0.712 0.919 0.836 9.9 0.579

SVM 0.705 0.656 0.731 0.710 0.934 0.668 18.6 7.451
KNN 0.712 0.536 0.714 0.710 0.891 3.584 0.006 1.837

Easy Ensemble 0.616 0.591 0.700 0.639 0.878 1.656 46.1 42.494

LSTM 0.754 0.584 0.751 0.746 0.944 0.633 349.1 2.299
BLSTM 0.736 0.575 0.742 0.734 0.927 0.793 974.9 3.410

Encoder Decoder 0.780 0.541 0.780 0.774 0.943 0.642 2911.2 5.755

Table 1: Results of each model on the testing dataset with the best parameters found during hyperpa-
rameter tuning. The best score in each category is bold and the second best italic. The best scores of
each model category are underlined. The first category is the baseline, the second the semi-supervised
models, the third the independent supervised classifiers and the last the ANNs. Log-Loss and ROC
AUC score are not compared if not all models within a group have them.

B Appendix

B.1 Practitioners Guide

The following criteria should be considered when choosing a model for an automatic SMP analysis:

A) Time and resources for hyperparameter tuning. The LSTM and the encoder-decoder network
are recommended when plenty of tuning time is available. Especially, the encoder-decoder network
performs badly if not tuned well. The SVM and the balanced RF need little tuning time, whereas the
RF is the go-to-model in case (almost) no tuning time can be provided.

B) Need for a simple to handle, off-the-shelf algorithm. Among the high-performing models, the
RFs and the SVM are the easiest to handle off-the-shelf algorithm. The self-supervised algorithms
and especially the ANNs require a somewhat deeper understanding of the models and the ability to
implement those.

C) Importance of minority classes. When deciding on a model, the underlying task must be
examined as well: In case of avalanche prediction it is essential to predict a buried layer of “surface
hoar” - a very rare class, which needs to be detected no matter at which costs. In such a case of
“minority class prediction” the balanced RF or the SVM should be considered. The ANNs and the
RF, in contrast, are more suitable to achieve an overall good classification.

D) Availability of unlabeled data that is from the same distribution as the labeled data. In case
a lot of unlabeled data from the same distribution and time is available, the self-trained classifier
can be considered. The weak learner of the self-trained classifier can be chosen according to the
criteria listed above. Since in this work we only had a small subset of unlabeled data stemming
from the same distribution like the labeled data, further evaluations on the self-trained classifier and
label-propagation remain open.
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C Appendix

C.1 Model Setup

Python 3.6 was used throughout the project. All used packages can be found on https://github.
com/liellnima/snowdragon in the requirements text file. PCA, t-SNE, k-means clustering, Gaus-
sian mixture models, Bayesian Gaussian mixture models, RFs, SVMs and the KNN algorithm were
used as made available through scikit-learn from Pedregosa et al. [2011]. 6 The easy ensemble for
imbalanced datasets and a balanced variant of the RF are imported from imbalanced-learn from
Lemaître et al. [2017]. 7 All ANN architectures were created with the help of TensorFlow [Abadi
et al., 2015] and Keras [Chollet et al., 2015].8 9 The attention model within the encoder-decoder
network was used as provided in the keras-attention-mechanism package by CyberZHG [2020].

C.2 Experimental Setup

A typical training, validation, testing and tuning framework was employed. Circa 80% of the labeled
dataset is used as training and validation data, while circa 20% is used for testing. Validation
is realized as a 5-fold cross-validation [Stone, 1974] during hyperparameter tuning. Moderate
hyperparameter tuning was applied and all tuning results can be found in the github repository. 10

The experiments were run on two different machines. A set of experiments that is compared to
each other was always run on the same machine. The machine on which single experiments and
the complete evaluation were conducted is a 64-bit system with an Ubuntu 18.04 (Bionic Beaver)
operating system. The machine has 16 GB RAM and an Intel® Core™ i7-6700HQ CPU @ 2.60GHz
× 8 (and the GPU was not used). Hyperparameter tuning, training and validation were run on an
Azure virtual machine of the Dsv3-series, namely on a Standard_D4s_v3 11 machine with Ubuntu
18.04 (Bionic Beaver) as an operating system, 16 GB RAM and 4 vCPUs. Wherever possible and
throughout the snowdragon repository, the number 42 was used for random states and random seeds.
The results are replicable when using 42 as random state and seed.

D Appendix

D.1 Data Preprocessing

During data preprocessing the data was cleaned and prepared for the models. Among other steps,
measurement side effects were cleansed out, the force signal of each SMP profile was binned into 1
mm sections, and sliding windows were applied to add time-dependent variables from a Poisson shot
noise model by Löwe and Van Herwijnen [2012]. The overall dataset was normalized, some snow
grain classes were merged and profiles from the melting season were removed. Subsequently, the
structure of the dataset was analyzed with feature selection (ANOVA [Fisher, 1992], and RF Feature
Importance) and dimension reduction techniques (Principal Component Analysis [Pearson, 1901,
Hotelling, 1933], and t-distributed Stochastic Neighbor Embedding [Van der Maaten and Hinton,
2008]) to understand the interaction between the different snow grain types better.

6https://scikit-learn.org/stable/
7https://imbalanced-learn.org/stable/
8https://www.tensorflow.org/
9https://keras.io/

10https://github.com/liellnima/snowdragon
11https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
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