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Abstract

Climate change continues to be a pressing issue that currently affects society at-
large. It is important that we as a society, including the Computer Vision (CV)
community take steps to limit our impact on the environment. In this paper, we
(a) analyze the effect of diminishing returns on CV methods, and (b) propose a

“NoFADE”: a novel entropy-based metric to quantify model–dataset–complexity
relationships. We show that some CV tasks are reaching saturation, while others
are almost fully saturated. In this light, NoFADE allows the CV community to
compare models and datasets on a similar basis, establishing an agnostic platform.

1 Introduction

We are currently experiencing a surge in the development and implementation of neural architectures
in the computer vision (CV) community. This is accompanied by exponential increases in both model
complexity and accuracy, which are consistently correlated with performance dependent on computer
power [1]. The compute required for training AI models follows an exponential trend with a 3.4
month doubling period [2], as state of the art (SOTA) models (eg. NAS, AlphaZero) utilize over
×0.3M the compute of previous benchmarks (eg. AlexNet). The community is heavily focused
on surpassing SOTA results. However, this will require further increases in compute power and
downstream implications cannot be overlooked, particularly CO2 output of deep learning workloads.

The Intergovernmental Panel on Climate Change (IPCC) provides transparent reports on the effects
of climate change to policy makers and the scientific community. In the 2019 IPCC report, the
IPCC highlighted that the 1.5◦C above pre-industrial levels is required to mitigate extreme climate
related events. In 2016, there was 52 GtCO2 with an expected 52-58 GtCO2 by 2030, with an
IPCC recommended 25-30 GtCO2 [3] in the same time frame. Recently, the sixth IPCC report was
released where they stressed that “global warming of 1.5◦C and 2.0◦C will be exceeded in the 21st
century unless deep reductions in CO2 and other greenhouse gases occur in the coming decades” [3].
The climate crisis is a pressing issue that faces society at-large, and as such everyone, even those
within the deep-learning community have their role to play to curb the climate crisis. It is crucial our
community gains a better understanding of how our deep learning models affect the climate crisis,
our responsibilities within the crisis, and improvements in our methodologies to include awareness of
the crisis.

There has been no previous analysis on the topic within the deep learning and CV communities;
therefore we propose and investigate the following questions:
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1. How much CO2 is emitted compared to evaluation metrics for any model? Is there a
saturation occurring within popular fields?

2. How can we gain a better understanding of the relationships between models and datasets
on the basis of CO2 investment?

In answering these questions, we find that (1) there exists a diminishing return on increasing compu-
tation and equivalently CO2 emission and (2) we develop a metric to characterize the relationship
between a model and the dataset’s difficulty of learning while normalizing for complexity.

2 Diminishing Returns of Increasing Computation

As deep learning grows in popularity, there is corresponding competition to improve upon SOTA
methods. In doing so, the community often overlooks the implicit costs of chasing SOTA such as
the increasing computational burdens [1, 4] which in turn have severe environmental consequences.
These models necessitate growing computational footprints during training but also during their
lifetime [4] as deployed systems. Here, we analyze the trade-offs between increasing computational
cost in Watt-hours and environmental cost in CO2 emissions.

Inspired by [1, 4] methodologies, we begin by generating a corpus of computer vision models within
the three most common tasks (a) classification, (b) segmentation and (c) detection. We surveyed 13
classification papers [5–17], 22 segmentation papers [18–39] and 10 detection papers [40–49]. For
every model, we extracted the Top-1 Test-accuracy, mAP or mIOU, FLOPS, GPU hours and GPU
type.

Using GPU type, the Watt-to-FLOPS was calculated using the model’s FLOPS as f as ω = Watt/f.
Then, the GPU Watt-to-FLOPS are denoted as ωg and the CPU’s Watt-to-FLOPS as ωc [4]. We
obtain a model’s power draw, Pm over training by multiplying the model’s flops, f by the sum of the
Watt-to-FLOPS ratios. This quantity would be multiplied by the total GPU hours to train [4], seen
below:

Pm[Wh] = f × (ωg + ωc)× GPU hours. (1)

The final CO2 emissions are calculated by multiplying the power draw from a model by the EPA’s
Wh to CO2 measurement 0.707× 10−3 metric tonnes/kWh, CO2 = Pm · 0.707× 10−3.

(a) ImageNet (b) COCO (c) PASCAL

(d) CityScapes (e) PASCAL VOC

Figure 1: (a) Classification task ImageNet [50], (b, c) Sematic Segmentation tasks MS COCO [51]
and PASCAL [52], (d,e) Detection tasks CityScape [53] and PASCAL VOC [52]
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Within classification, the ImageNet dataset [50] has the most distinct saturation as seen in Figure 1(a).
This implies a clear diminishing return on ‘investment’ of CO2 emissions for gained accuracy. The
classification task is the most mature, combined with long-term interest prior to deep-learning methods.
To that end, it is justified that ImageNet reaches saturation as the field reaches optimal performance
with minimal improvements in recent years. In fields such as Segmentation and Detection that
are still developing, the saturation curve is observable but less well defined, as in Figure 1(b) and
(d). Notice in all the subfigures the models with more FLOPS generally emit significantly more
CO2, yet these high-FLOPS models have the same or lower performance in comparison to low-
FLOPS models. On MS COCO, PASCAL, and PASCAL VOC, we see that it is possible to trade-off
computational complexity to achieve SOTA performance by reducing the FLOPS constraint. For
example, implementing ThunderNet(535) in lieu of SSD321 would achieve better test performance
with less FLOPS, thus reducing carbon emissions without sacrificing results.

3 NoFADE Development

In the pursuit of increasing SOTA at a diminishing computational cost, we find that there currently is
no concrete analysis of the dataset learning space in relationship to models. To identify if a model
is learning well on a dataset, the difficulty of learning must be determined, and weighed with the
relationship to test-accuracy. We begin by creating a collection of the unique model i and dataset
j pairs (Modeli,Datasetj). For any two model-dataset pairs, it becomes difficult to compare their
relative performances while taking into account difficulty of learning and computational complexity
of a model. In this work, we attempt to characterize a novel metric, NoFADE: Normalized FLOPS for
Accuracy-Dataset Entropy which allows the CV community to compare models in an effective way.

We use Shannon entropy as the underlying measure of difficulty of learning [54]. We begin by
converting colour images to greyscale and using H(Image) = −

∑K
i=1 pi · log pi to determine the

entropy. The Image being analyzed has a frequency of pixel intensity pi, with K unique intensities.

Segmentation and Detection Segmentation (Cityscapes, PASCAL) and Detection (MS COCO,
PASCAL) datasets are comprised of a set of images with their reference true labels. As entropy
represents the randomness within an image, we can assess the total randomness of the dataset.
Therefore we apply Shannon Entropy to each image in the dataset to generate a normal distribution.
As shown in [54] measuring a dataset’s entropy distribution allows us to gain a better understanding
of image complexity and most importantly the difficulty of learning.

Figure 2: Entropy Histograms for Cityscapes, Pascal VOC, CIFAR10, CIFAR100 and MS COCO

Classification: Classification difficulty is inherently related not only to image complexity, but also
multi-distribution learning as the classes are themselves distributions. To resolve this, we compute
the entropy using Shannon Entropy for every class within CIFAR10, CIFAR100 and ImageNet.
Each class distribution now represents the complexity of that class, but to gain an informational
relationship about the dataset as a whole, we can measure the distances between classes. To do this
we employ the Jensen-Shannon distance [55], a statistical measure that assesses the distance between
two distributions in a symmetric and finite manner. Based on the Kullback-Leibler divergence,
Jensen-Shannon distance allows us to gain understanding of mutual information between the two
distributions.

JSD(P‖Q) =

√
1

2
DKL(P‖M) +

1

2
DKL(Q‖M). (2)

Here, M = 1
2 (P +Q) and DKL refers to the KL-divergence. Using Equation 2 we determine the

distance between each class distributions, which represents the difficulty of learning between the two
classes. Therefore, the sum of the Jensen-Shannon distances for the unique pairs of classes, provides
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a measure of the complexity of the dataset as a whole, with higher values representing more difficult
learning. In order to normalize the data to a similar scale as the entropy calculations, we take the log
of the summation.

NoFADE attempts to characterize a relationship between models and datasets while normalizing for
computational complexity. To do this, we propose multiplying the test-accuracy gained by the entropy
of the dataset. As a dataset’s difficulty of learning is correlated to it’s entropy or JS-distance, we are
effectively increasing the amount of “metric points” a model is gaining in proportion to the difficulty
of learning on that dataset. For example a 1% increase on ImageNet is “better” in the community
than a 1% increase on CIFAR10. To that end, we also recognize that the informal rule of “deeper
performs better” may skew these results. To mitigate this risk, we normalize the “metric points” by
the log FLOPS, as most of the FLOPS are tightly grouped the log allows us to exploit sensitivity.
Doing so lets the metric understand that higher FLOP models have a constraint and thus deserve a
normalization to allow for comparisons.

NoFADE =
test-accuracy× Entropy or JS-dist

log FLOPS
(3)

(a) Classification (b) Segmentation (c) Detection

Figure 3: log CO2 vs. NoFADE, (a) Classification with ImageNet, CIFAR10, CIFAR100 (b)
Segmentation with COCO, PASCAL, Cityscape, ISIC 2018 and DSB 2018, (c) Detection with MS
COCO and PASCAL VOC

In Figure 3 we can compare methods in a models–dataset–complexity–agnostic manner, building
the foundation for comparisons. For example, because the ViT transformer models have such large
FLOPS they do perform extremely well but at a significant complexity cost which is reflected in the
lower NoFADE score, their training times are also reflected with their extremely large CO2 footprints.
Therefore, implying the transformer models don’t perform well on these key dimensions. Similarly,
some of the best models like MNasNet perform extremely well in all three categories, having low
CO2 while maintaining a high NoFADE score.

4 Conclusion

In this paper, we demonstrate how our choices as the CV community have an impact on global
climate change. Specifically, the selection of various architecture and dataset pairs were explored and
how dataset complexity affects a model’s efficiency and performance, resulting in increased CO2
emissions. We propose a new metric to quantify a dataset’s complexity and validated as a reasonable
method to track CO2 emissions arising from model training. We hope that this proposal will help the
AI community be more environmentally conscious and to be as efficient as possible when training
their models and utilize the novel tool to measure model–dataset–CO2 relationship to gain a better
understanding of their place in the field. In addition, this measurement aid could facilitate model and
dataset selection for performance and efficiency trade-off. Overall, with this new metric in hand, we
anticipate researchers to start trying to reduce their environmental impact and hopefully find new
ways to do so as well.

We’d like to thank Michal Fishkin for her worthwhile contributions without whom this work would not have
taken place.
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