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Abstract

In combating climate change, an effective demand-based energy supply operation
of the district energy system (DES) for heating or cooling is indispensable. As
a consequence, an accurate forecast of heat consumption on the consumer side
poses an important first step towards an optimal energy supply. However, due to
the non-linearity and non-stationarity of heat consumption data, the prediction of
the thermal energy demand of DES remains challenging. In this work, we propose
a forecasting framework for thermal energy consumption within a district heating
system (DHS) based on kernel Support Vector Regression (kSVR) using real-world
smart meter data. Particle Swarm Optimization (PSO) is employed to find the
optimal hyper-parameter for the kSVR model which leads to the superiority of
the proposed methods when compared to a state-of-the-art ARIMA model. The
average MAPE is reduced to 2.07% and 2.64% for the individual meter-specific
forecasting and for forecasting of societal consumption, respectively.

1 Introduction

According to the United Nation Environment Program, ‘cities are a key contributor to climate change’,
as urban areas are ‘responsible for 75% of global CO2 emissions’ [1]]. One of the effective weapons in
combating climate change is the district energy system (DES) [2], which implies the need for demand-
driven thermal energy supply based on real consumption. However, utilities tend to over-supply the
DES network to date, as the security of the energy supply must be ensured and the accumulated
energy consumption acquired by the consumer side installation of smart meters is solely used for
billing purposes. Hence, the behavior of the end-consumer remains largely unknown for the utilities
while operating the DES network. Consequently, an accurate forecast of thermal energy demand
poses the logical first step towards an optimized energy supply of the entire network. The focus of
our work is the energy demand forecast of district heating systems (DHS), as it is the majority of the
installed DES networks worldwide.

Although the performance of statistical forecast methods, e.g. the AR[3], ARIMA[4, 5] or SARIMA
[6] models already demonstrate promising results in general, the prediction accuracy of energy load
is limited due to the nonlinearity in the underlying time series. Recently, a model using the artificial
neural network (ANN), e.g. [[7l], is proposed to address the nonlinearity present heat consumption/load
data. However, the training of ANN is often challenging, as it has the tendency of being trapped
in local optima [§]]. Deeper models like Long Short Time Memory (LSTM) has the capability to
model the underlining trend, seasonality, residuals, and external factors [9], however the training
of such model prerequisites a large amount of data that can not be provided by the vast majority of
the utilities. Traditional machine learning methods such as Support Vector Regression (SVR) [L10],
which is equipped with the inherent capability to deal with nonlinearity [11]], present a compromise.
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SVR-based methods demonstrate their superiority to other machine learning models for heat load
prediction in [12}[13|[14]. As the performance and the usability of SVR are greatly affected by the
choice of the model hyper-parameters, evolutionary algorithms such as Particle Swarm Optimization
(PSO) [15] are employed to determine the optimal hyper-parameters automatically. Previously,
PSO-SVR is proposed in [8] for load prediction of a DHS based on the daily heat load data during
the heating season acquired from the production plant that demonstrates promising results.

In this paper, the main contributions of our work are: (1) a machine learning-based forecast framework
enables the use of accumulated heat consumption data acquired with smart meters that are installed on
the end-consumer side; (2) the formulation of a PSO-kSVR model that has the inherent capability to
deal with the nonlinearity of the underlying data; and (3) to the best of our knowledge, exploring the
use of PSO-SVR and accumulated heat consumption for the forecast of energy load with real-world
smart meter data on the house-hold level for the first time.

2 Accumulated Consumption Data and Data Analysis

The smart meter data used in this work is provided by a danish utility with an hourly temporal
resolution. It is a small size municipality with 3808 consumers. As the smart meters are installed
one after the other instead of all at once, the time period of the raw data spans from 6 to 12 months.
Additionally, public available meteorological data of the same municipality at the same time interval
are utilized to incorporate the weather conditions. Stationarity tests and decomposition methods are
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Figure 1: (a) Pattern of accumulated heat consumption for a year; (b) Pattern of accumulated heat
consumption for 16 days

applied to analyse the data property. Basically, the accumulated energy consumption over a year is
non-linear and non-stationary (refer to Fig.[I(a)). However, it shows a linear trend and stationarity in
a 16 days window (refer to Fig. [I[(b)). Furthermore, the accumulated consumption data of 16 days
can be decomposed into a linear trend, daily seasonality, and residuals. From a signal processing
point of view, the trend can be considered as the low-frequency component, whereas the seasonality
and residuals pose the high-frequency component of the data.

Additionally, we performed a correlation analysis to identify the most descriptive features based on
historical consumption and the feel-like temperature. In comparison to average temperature, feel-like
temperature represents the maximum and minimum temperature, as well as wind speed and humidity,
therefore has a higher descriptive character. In order to identify the appropriate lag length of the
historical consumption, PARCOR-coefficients are computed and analysed by auto-correlating the
daily data. The lag length of the corresponding feel-like temperature is identified by performing
cross-correlative analysis with the accumulated consumption data. The aforementioned analysis on a
set of randomly selected smart meters data demonstrates the insignificance of lag features beyond
a lag of one hour. Thus, historical consumption and feel-like temperature with the lag of 1 hour,
denoted as h*~! and #*~! are identified as the most descriptive features for our prediction task.



3 PSO-SVR framework

The input data for our PSO-kSVR framework are time series of accumulated heat consumption
acquired by smart meters (refer to Fig. [[(a)) and is split into training, validation, and test data.
The intuition behind this choice is that the accumulation essentially acts as integration. From the
signal processing perspective, integration can be considered as a low-pass filter. Therefore, the
high-frequency noise components in the accumulated consumption data are suppressed and thus the
enhanced signal-to-noise ratio leads to enhanced performance in prediction [[16]]. As the raw data of
the smart meter are usually unevenly spaced time series due to the transmission errors within wireless
communication networks, the input data are first interpolated and resampled to evenly spaced time
series. Subsequently, a set of descriptive features, that are identified by employing data analysis
techniques (detailed in Sec. [2), are extracted from the preprocessed data. In order to model the
seasonality and residuals of the underlying heat consumption data and find the non-linear correlation
between weather and heat consumption, kernel-SVR (kSVR) with Radial Basis Function (RBF)
kernel is employed. Hereby, the heat load prediction is formulated as an optimization task, which
minimizes the square of the L2-norm of the coefficient vector (@) of the features such that the error
between the target and predicted accumulated consumption is within a margin of error.

As the choice of the hyper-parameters ¢, C, and ~ affect the model performance greatly, PSO is
employed to estimate the optimal hyper-parameters for kSVR. The validation data are used to update
the configuration of the particles in a three-dimensional search space. The final predicted consumption
for each discrete time step is estimated as a time shift corrected the first-order derivative of the model
output, i.e. predicted accumulated energy.

4 Experiments and Result

Two types of experiments are conducted in this work to evaluate the accuracy and robustness of the
proposed PSO-kSVR prediction framework:

Typ I: qualitative and quantitative evaluation with a different subset of each meter-specific dataset
aiming at analyzing the performance and applicability of our method for different smart
meters, henceforth meter-specific evaluation.

Typ II: comparative experiments aiming at comparing our proposed method with the state-of-the-art
ARIMA model and analyzing the effect of different seasons/months. For this purpose,
all meters that have 12 months of historical data are summed up to reflect the societal
consumption of the municipality. Therefore, this comparative study is referred to as societal
evaluation henceforth.

For the both settings, a similar configuration of the PSO algorithm that is introduced in [[17] is utilized,
facilitating a prediction for a window of 24 hours. The evaluation metrics for the quantitative results
are root mean squared error (RMSE) and mean absolute percentage error (MAPE). The input data are
divided into subsets containing 16 days of consumption and weather data. The split ratio of training,
validation, and test data is 14:1:1.

Results The quantitative and qualitative results both experiments are depicted in Fig.[2] For meter-
specific evaluation, the range of the mean MAPE is 2.662 + 0.353% (refer to Fig, whereas the
range of RMSE is 0.1288 + 0.0769 kWh (refer to Fig.[2)). For the societal evaluation, 40 datasets
that have 12 months of historical data are selected and summed up. The quantitative result shows that
for the proposed PSO-kSVR the range of MAPE and RMSE is 3.688 +1.24% and 5.469 + 2.020kWh,
respectively, whereas the MAPE and RSME of ARIMA are 5.745 + 1.056% and 19.589 =+ 4.199
kWh respectively.

Discussion The results of all experiments conducted indicate that the proposed PSO-kSVR has the
capability to perform accurate forecasts for heat load acquired by smart meters and outperforms
the state-of-the-art ARIMA model consistently. Our PSO-kSVR model exploits the linear trend
of the accumulated consumption data, taking the external meteorological factor such as feel-like
temperature into consideration. The accumulation of the consumption data, which leads to the
reduction of high-frequency noise through low-pass filtering, plays a key role in enhancing the model
performance since the expected prediction error decreases if the variance of noise in the underlying
data is small [[16]. Additionally, the nonlinear seasonality is modeled with the RBF kernel-based
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Figure 2: Quantitative and exemplary qualitative results of all experiments conducted are illustrated
in the first and second row, respectively. From left to right, 1% row present MAPE and RMSE of
PSO-kSVR for meter-specific evaluation and the comparison of societal evaluation. An example
of the qualitative result for meter-specific evaluation is depicted in the first image in the 2™ row.
The comparison of PSO-kSVR and ARIMA are presented in the 2" and 3™ images in the lower row.

kSVR model, where the optimal hyper-parameters are estimated with PSO. Thus, the proposed
methods lead to promising quantitative and qualitative results. One major limitation of this study is
the use of MAPE as an evaluation metrics for quantitative analysis. By definition, MAPE is skewed,
i.e. large errors in the nominator divided by a small denominator represent the ground truth data
affect the MAPE dramatically. Furthermore, MAPE has an asymmetric tendency of penalization [18]]
when comparing positive and negative errors, i.e. over-predictions are punished heavier than under-
prediction. Finally, the calculation of MAPE also faces the problem of the division by zero. For
instance, in the meter-specific evaluation, the ground truth data of each individual smart meter for a
certain timestamp is zero, if no heat energy is consumed. In order to tackle this challenge, we add an
offset equal to the dynamic range of the respective consumption to the ground truth and predicted
value. This consequently introduced bias in the evaluation results. Thus, MAPE is not an ideal
evaluation metric to analyse the accuracy of time series prediction methods.

5 Conclusion and Outlook

In this work, a novel PSO-kSVR based framework for the prediction of heat consumption at the
household level is proposed using accumulated heat consumption data acquired with smart meters as
input data. Hereby, the hyper-parameters of the kSVR model are estimated with PSO without any
manual parameter tuning process. The qualitative and quantitative evaluation results in two different
experiment settings demonstrate, that the proposed method is able to achieve accurate prediction of
heat consumption for 24 hours with a relatively small training dataset (i.e. 14 days) regardless of
data acquisition hardware and season/month. In the future, a comprehensive comparison with deep
learning techniques should be performed. Furthermore, more quantitative experiments with heat
consumption data from other geographical regions should be conducted. Especially, the time window
of 16 days where the input data are linear and stationary may not valid for all geographical regions.
This effect needs to be investigated further. Finally, we recommend developing an energy transport
model to describe the individual transport latency from the production plant to each household based
on a hybrid data set, comprising the asset management data and smart meter data. The combination
of this energy transport latency model and the prediction determined based on our proposed method
is able to provide utility companies an intuitive data-driven tool towards optimal energy supply with
reduced CO, emissions.
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A PSO-kSVR Mathematical Modeling

In general, we use kSVR to perform the forecasting task. Hereby, the heat load prediction is
formulated as an optimization task, which minimizes the square of L2-norm of the coefficient vector
(w) of the features such that the error between the target and predicted accumulated consumption is
within a margin of error (refer to Eq. [I)).
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Here, w; are the coefficients or weights of the model and e is the margin of error that is allowed,
known as slack variable. In order to minimize the deviation from the margin, some relaxation factors
¢, ¢* are included. C' > 0, the so called box constraint acts as a penalty coefficient that represents
the strength of the regulation of observations that lie outside the margin e. The training samples
are {(71, 1), (72, y2), (T3, Y3) - (T, ym) }> T3 € R? y; € Rfori = 1,2,3, ..., m, where m is the
number of training samples available. Each feature vector is defined as &; : (hit_l, Git_l) and
the accumulated consumption which we intend to predict is y;. Here ¢(Z) is the kernel function
K (Z,7) to transform a non-linear problem into a linear problem by projecting of features into a
higher dimension. The kernel employed here is the RBF kernel (also known as Guassian kernel),
that is defined as exp(—~||Z — Z’||?), where ~ is a hyper-parameter that control the impact of each
training example on the overall model.

Obviously, the choice of the hyper-parameters €, C', and y affects the model performance greatly.
SVR model with hard-coded hyper-parameters lacks the adaptive capacity to deal with the variance
of the input data. Furthermore, manual tuning of the hyper-parameters reduces the usability of the
kSVR model for real-world applications. Therefore, a sophisticated adaptive method to determine the
optimal configuration of the hyper-parameters for kSVR is incorporated in our method.

Previously, it has been demonstrated that PSO is a promising method to find the optimal model
hyper-parameters for high frequent data [[17]. As the underlying data of our application consists of
high-frequent components, we use PSO to optimize the hyper-parameters in a three-dimensional
search space, spanned by C, +, and e.

On basic level, the PSO model aims to produce an optimal population for the configuration of kSVR
by updating the velocity and position of particles as follows:

- 4 , , . 4
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Here, vg *1and Ug denotes the new and current velocity, pg 1 and pZ represents the new and current

position respectively for i particle where j is the iteration number. Also w is the so called inertial
weight that defines the search space of the particles, ¢, co are the particle’s personal and societal
learning rate, r1, 2 are random numbers uniformly distributed in (0,1) and randomly updated with
velocity updates, that represents the weights of two distances updating the particle velocity. Finally,
LI*, GI™ are the current local and global best position, for which minimum prediction error is attained
by the model.

In total, we utilize the mean-squared error of predictions as a fitness function for the evaluation of the
particles in the population. The algorithm terminates when the iteration limit is reached. At the end
of PSO training, the particles converge to such a position in their 3-dimensional search space, i.e. a
combination of C, «y and € for which the mean squared error to predict the accumulated consumption
using SVR is minimum.

The final heat consumption of each timestamp in the prediction time period, i.e. heat load, is estimated
by computing the first-order derivative of the model output and performing the time shift correction.



The latter is necessary because the model has a dependency on historical data to predict future
consumption, i.e. the model always uses the value at the time step ¢ to predict the value at (¢ + 7)*"
instant. This lag can be compensated using time-shifting by the same 7 unit of time.

B Experiments Details

In all experiements conducted, the configuration details of PSO is the following: 20 particles are used
in a three-dimensional search space with the inertia of 1 for 50 iterations. The social factors, c; and
co are instantiated with 2. The range of C, € and ~y are initialized as [le — 3, 1e5], [le — 8, 1e — 1]
and [le — 3, 1e3] respectively. To evaluate the performance of estimation we have used root mean
squared error (RMSE), given by the formula,

N
1
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where [V is the number of samples in prediction window, y; is the estimated consumption and y; is
the actual consumption. As a comparative evaluation metrics of performance, we have used mean
absolute percentage error (MAPE) which is formulated as,
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C Decomposition of Accumulated Consumption Data

Decomposition of the observed consumption (kWh)

el
()
2 13150 /////
(]
wn
Q
S 13100
0 2 a 6 8 10 12 14 16
2 13150
L
2
13100
0 2 4 6 8 10 12 14 16
Z 025
g
S 0.00
©
g -0.25
0 2 4 6 8 10 12 14 16
_1
©
3
.g 0
v
0 2 a 6 8 10 12 14 16
Days

Figure 3: Decomposing the time series of consumption into trend, seasonality and residual

D Further Results
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Figure 4: Prediction of heat consumption in different months of the year for an individual meter.
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Figure 5: Quantitative result of the societal experiment. Forecasting results of PSO-kSVR and
ARIMA for the month June are depicted in the left and right images, respectively.

Table 1: Quantitative comparison of ARIMA model and SVR-PSO throughout one year for the
societal evaluation.

Month ARIMA model SVR-PSO
MAPE% RMSE MAPE% RMSE

November 8.4314+2.345 18.884+13.344 4.079+1.285 2.607+0.527
December 5.5464+0.017 22.04740.266 3.3884+0.682 5.467+0.715
January 5.530+0.033  19.934+1.78 3.3204+1.128 5.381+£1.955
February 5.47940.022 18.25640.002 3.448+1.324 5.222+1.910
March 5.4864+0.028 18.848+0.584 4.084+0912 6.268+1.846
April 5.54940.021 18.24340.022 3.707+1.206 5.716+1.812
May 5.473+£0.029 19.354+1.121 5.114+0.281 7.764+0.545
June 5.5404+0.007 18.50040.22 2.9204+0.293 4.890+0.67
July 5.460+0.028 19.566+0.145 2.636+0.899 4.434+2.275
August 5.5184+0.049 20.63742.327 3.951+1.696 6.017+2.547
September  5.4414+0.002 20.6424+2.41 4.3774+0.546  6.8521+0.636
October 5.5874+0.042 20.1584+1.692 3.2314+1.348  5.016+2.092
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