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Motivation

• Long range climate forecasting can save lives and property

o High impact extreme events, e.g., heat waves, cold fronts, floods, droughts can result in 

tremendous loss of lives and property

o The longer the range of accurate forecasting, the more the time for preparation and response

• Deep learning models

o Become more popular on climate forecasting

o Model uncertainties – models trained with identical hyperparameters are usually different

o Model uncertainties can be more prominent with limited climate data

o Reduce reliability especially with long-range forecasting

• Goal

o Reduce deep learning model uncertainties and improve accuracy in seasonal forecasting
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Contributions

• Propose a network architecture for 2m temperature prediction 

o Denormalization layer – provides the benefits of data normalization without normalizing the data

• Propose a late fusion approach that systematically combines the predictions from 

multiple models to reduce expected errors of the fused results
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Network Architecture for 2m Temperature Forecasting

• Convolutional neural network

o Multi-channel input tensor formed by stacking the maps of 2m temperature of a fixed input horizon

o Multi-channel output, each channel contains the 2m temperature of a location at a fixed lead time

– E.g., 8 locations → 8 channels (scalars)

o Six dense blocks, each with one convolutional layer with 20 filters

o Batch normalization (BN) layer as the first layer for input data normalization

o Denormalization layer as the last layer:

– The fully connected (FC) layer only needs to provide normalized prediction → same advantage as 

normalizing observed data 
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Late Fusion 

• Late fusion

Combines predictions from different models to reduce expected errors from all models: 
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𝑓 𝑠𝑖 = σ𝑗𝑤
𝑗 𝑓𝑗 𝑠𝑖 with     σ𝑗𝑤

𝑗 = 1

where 𝑓𝑗 𝑠𝑖 is the prediction by the 𝑗th model of input 𝑠𝑖. The pairwise correlation between models 

𝑗1 and 𝑗2 is:

with 𝑡 𝑠𝑖 the true value. The weights are then computed (from the validation data) by:

with 𝐾 the number of models to be fused

(1)

(2)
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• Data – 2m temperature maps of the ERA5 reanalysis data

o Training – 1979 – 2007 (1508 weeks)

o Validation – 2008 – 2011 (208 weeks)

o Testing – 2012 – 2020 (468 weeks)

• Frameworks

o Trained 20 models per lead time

o Late fusion – at each lead time, predictions of all models were combined

o Best model – at each lead time, the model with the least validation RMSE was chosen

• Evaluation metric

o Root mean square error skill score (RMSESS) ∈ −∞, 1 :

o Compares the model forecasts with the 30-year climate normals (> 0 means the model is better)

Experiments
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Results

• Example of forecasts of a model on testing data with lead time = 5 weeks

o Forecasts closely followed the ground truth

o The model was able to predict the anomaly in 2016 (the hottest year on record)
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Results

• Forecasts vs lead time

o Most RMSESS > 0 → the models were better than climate normals

o Models trained with same hyperparameters are different especially at large lead times

o The late fusion framework outperformed the best model framework
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Results

• Performance with increasing number of models

o The late fusion framework gradually improved, outperformed the best model
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Thanks!
Contact: clwong@us.ibm.com


