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Motivation

« Long range climate forecasting can save lives and property

o High impact extreme events, e.g., heat waves, cold fronts, floods, droughts can result in
tremendous loss of lives and property

o The longer the range of accurate forecasting, the more the time for preparation and response

* Deep learning models
o Become more popular on climate forecasting
o Model uncertainties — models trained with identical hyperparameters are usually different
o Model uncertainties can be more prominent with limited climate data
o Reduce reliability especially with long-range forecasting

» Goal
o Reduce deep learning model uncertainties and improve accuracy in seasonal forecasting
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Contributions

* Propose a network architecture for 2m temperature prediction
o Denormalization layer — provides the benefits of data normalization without normalizing the data

* Propose a late fusion approach that systematically combines the predictions from
multiple models to reduce expected errors of the fused results
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Network Architecture for 2m Temperature Forecasting

« Convolutional neural network
o Multi-channel input tensor formed by stacking the maps of 2m temperature of a fixed input horizon
o Multi-channel output, each channel contains the 2m temperature of a location at a fixed lead time
— E.g., 8 locations - 8 channels (scalars)
o Six dense blocks, each with one convolutional layer with 20 filters
o Batch normalization (BN) layer as the first layer for input data normalization
o Denormalization layer as the last layer: Zo(c) = z;(c)o(c) + m(c)

— The fully connected (FC) layer only needs to provide normalized prediction - same advantage as
normalizing observed data
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Late Fusion

* Late fusion
Combines predictions from different models to reduce expected errors from all models:

f(s) = X;w/ fI(s) with ¥,w/ =1 (1)

where f7(s;) is the prediction by the jth model of input s;. The pairwise correlation between models
j1 and j, is:

Mlj1,72] = Z S (si) — t(si)] [f72(s1) — t(s))] (2)

1

with t(s;) the true value. The weights are then computed (from the validation data) by:

M~11
w = argminw ' Mw = K

3
w 1. M- 11k )

with K the number of models to be fused
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Experiments

« Data — 2m temperature maps of the ERA5 reanalysis data
o Training — 1979 — 2007 (1508 weeks)
o Validation — 2008 — 2011 (208 weeks)
o Testing — 2012 — 2020 (468 weeks)

* Frameworks
o Trained 20 models per lead time
o Late fusion — at each lead time, predictions of all models were combined
o Best model — at each lead time, the model with the least validation RMSE was chosen

 Evaluation metric

o Root mean square error skill score (RMSESS) € [—,1]: RMSESS =1 — RM5Fanodel

RJB/ISECIim
o Compares the model forecasts with the 30-year climate normals (> 0 means the model is better)
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Results

« Example of forecasts of a model on testing data with lead time = 5 weeks
o Forecasts closely followed the ground truth

o The model was able to predict the anomaly in 2016 (the hottest year on record)
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Results

* Forecasts vs lead time

o Most RMSESS > 0 - the models were better than climate normals
o Models trained with same hyperparameters are different especially at large lead times
o The late fusion framework outperformed the best model framework
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Results

* Performance with increasing number of models
o The late fusion framework gradually improved, outperformed the best model
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Thanks!

Contact: clwong@us.ibm.com
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