

Addressing Deep Learning Model Uncertainty in Long-Range Climate Forecasting with Late Fusion

Ken C. L. Wong¹, Hongzhi Wang¹, Etienne E. Vos², Bianca Zadrozny³,
Campbell D. Watson⁴, Tanveer Syeda-Mahmood¹

¹IBM Research, San Jose, CA, USA

²IBM Research, Johannesburg, GP, South Africa

³IBM Research, Rio De Janeiro, RJ, Brazil

⁴IBM Research, Yorktown Heights, NY, USA

Contact: clwong@us.ibm.com

Motivation

- Long range climate forecasting can save lives and property
 - High impact extreme events, e.g., heat waves, cold fronts, floods, droughts can result in tremendous loss of lives and property
 - The longer the range of accurate forecasting, the more the time for preparation and response
- Deep learning models
 - Become more popular on climate forecasting
 - Model uncertainties – models trained with identical hyperparameters are usually different
 - Model uncertainties can be more prominent with limited climate data
 - Reduce reliability especially with long-range forecasting
- Goal
 - Reduce deep learning model uncertainties and improve accuracy in seasonal forecasting

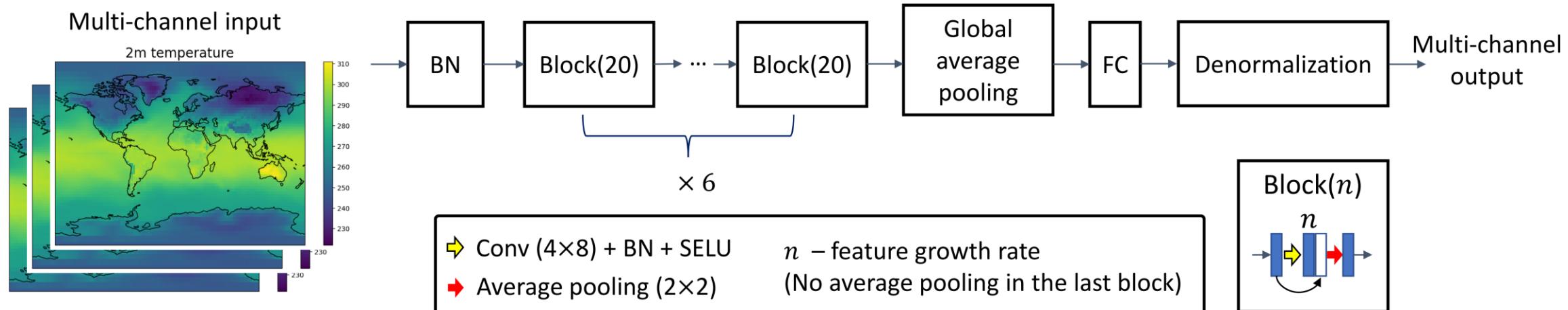
Contributions

- Propose a network architecture for 2m temperature prediction
 - Denormalization layer – provides the benefits of data normalization without normalizing the data
- Propose a late fusion approach that systematically combines the predictions from multiple models to reduce expected errors of the fused results

Network Architecture for 2m Temperature Forecasting

- Convolutional neural network

- Multi-channel input tensor formed by stacking the maps of 2m temperature of a fixed input horizon
- Multi-channel output, each channel contains the 2m temperature of a location at a fixed lead time
 - E.g., 8 locations \rightarrow 8 channels (scalars)
- Six dense blocks, each with one convolutional layer with 20 filters
- Batch normalization (BN) layer as the first layer for input data normalization
- Denormalization layer as the last layer: $x_o(c) = x_i(c)\sigma(c) + m(c)$
 - The fully connected (FC) layer only needs to provide normalized prediction \rightarrow same advantage as normalizing observed data



Late Fusion

- Late fusion

Combines predictions from different models to **reduce expected errors from all models**:

$$f(s_i) = \sum_j w^j f^j(s_i) \quad \text{with} \quad \sum_j w^j = 1 \quad (1)$$

where $f^j(s_i)$ is the prediction by the j th model of input s_i . The pairwise correlation between models j_1 and j_2 is:

$$M[j_1, j_2] = \sum_i [f^{j_1}(s_i) - t(s_i)] [f^{j_2}(s_i) - t(s_i)] \quad (2)$$

with $t(s_i)$ the true value. The weights are then computed (from the validation data) by:

$$\mathbf{w} = \arg \min_{\mathbf{w}} \mathbf{w}^T \mathbf{M} \mathbf{w} = \frac{\mathbf{M}^{-1} \mathbf{1}_K}{\mathbf{1}_K^T \mathbf{M}^{-1} \mathbf{1}_K} \quad (3)$$

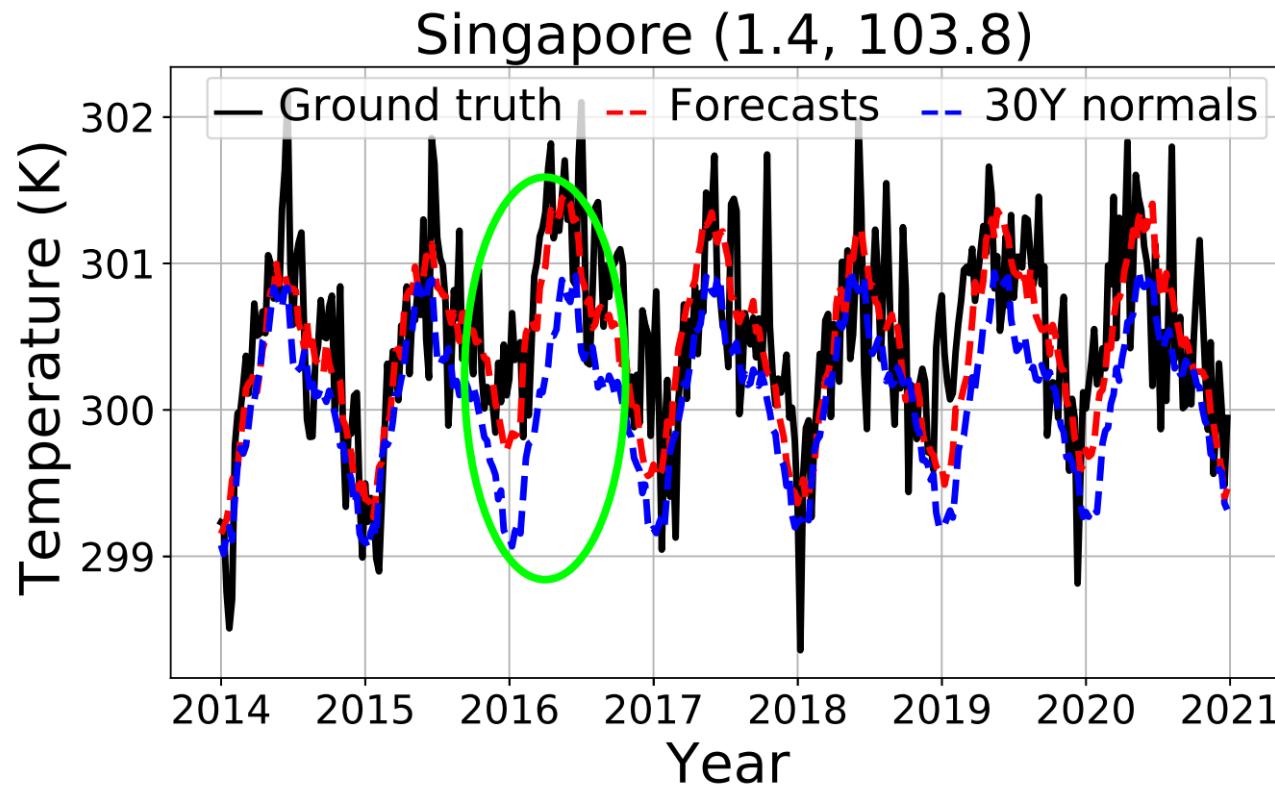
with K the number of models to be fused

Experiments

- Data – 2m temperature maps of the ERA5 reanalysis data
 - Training – 1979 – 2007 (1508 weeks)
 - Validation – 2008 – 2011 (208 weeks)
 - Testing – 2012 – 2020 (468 weeks)
- Frameworks
 - Trained 20 models per lead time
 - **Late fusion** – at each lead time, predictions of all models were combined
 - **Best model** – at each lead time, the model with the least validation RMSE was chosen
- Evaluation metric
 - Root mean square error skill score (RMSESS) $\in [-\infty, 1]$:
$$\text{RMSESS} = 1 - \frac{\text{RMSE}_{\text{model}}}{\text{RMSE}_{\text{clim}}}$$
 - Compares the model forecasts with the 30-year climate normals (> 0 means the model is better)

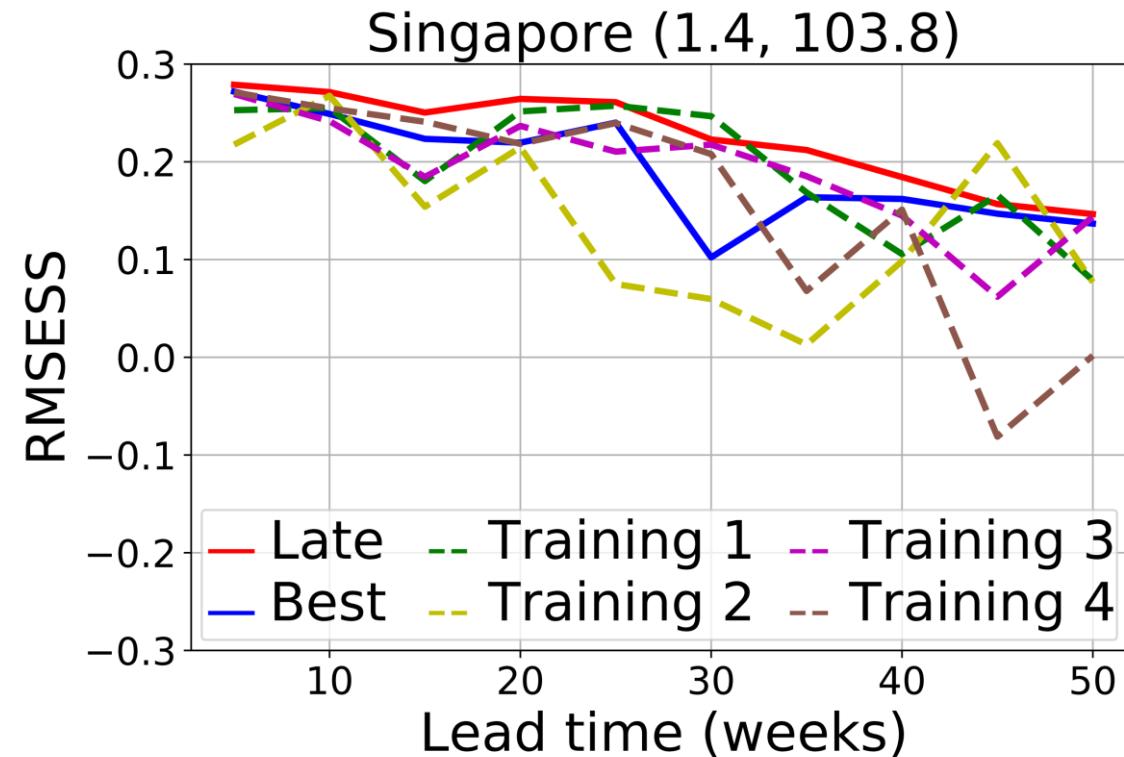
Results

- Example of forecasts of a model on testing data with lead time = 5 weeks
 - Forecasts closely followed the ground truth
 - The model was able to predict the anomaly in 2016 (the hottest year on record)



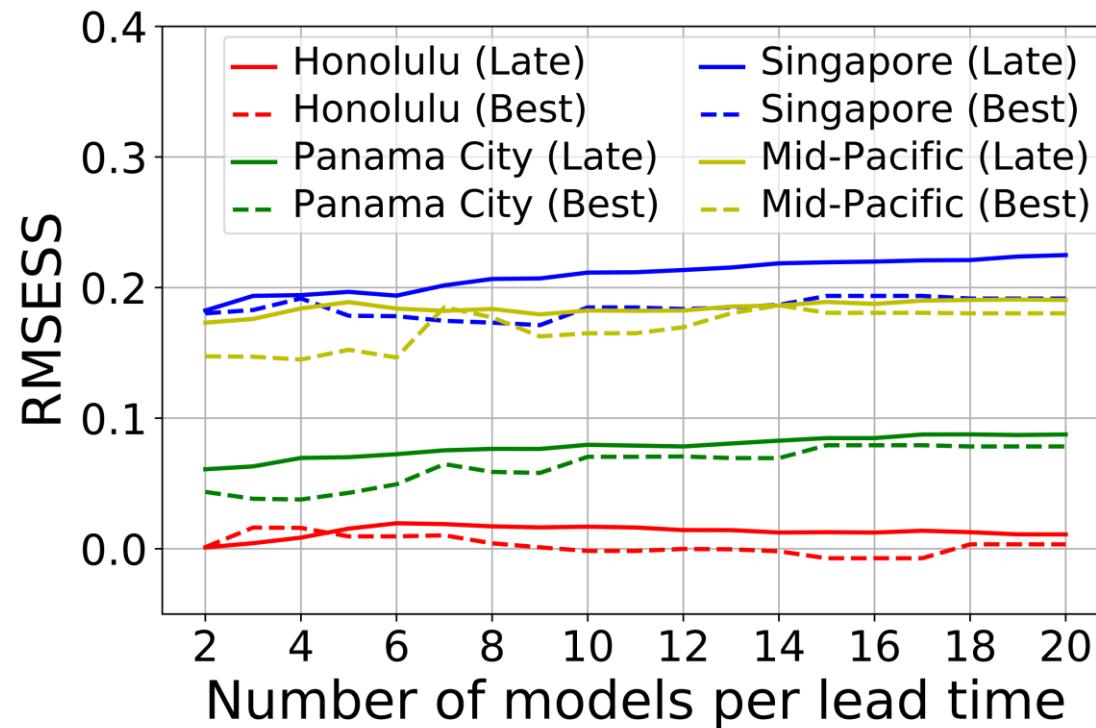
Results

- Forecasts vs lead time
 - Most RMSESS > 0 → the models were better than climate normals
 - Models trained with same hyperparameters are different especially at large lead times
 - The late fusion framework outperformed the best model framework



Results

- Performance with increasing number of models
 - The late fusion framework gradually improved, outperformed the best model



Thanks!

Contact: clwong@us.ibm.com