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Abstract

Tropical cyclone (TC) intensity forecasts are issued by human forecasters who evaluate spatio-
temporal observations (e.g., satellite imagery) and model output (e.g., numerical weather predic-
tion, statistical models) to produce forecasts every 6 hours. Within these time constraints, it can
be challenging to draw insight from such data. While high-capacity machine learning methods
are well suited for prediction problems with complex sequence data, extracting interpretable
scientific information with such methods is difficult. Here we leverage powerful AI prediction
algorithms and classical statistical inference to identify patterns in the evolution of TC convective
structure leading up to the rapid intensification of a storm, hence providing forecasters and
scientists with key insight into TC behavior.

1 Introduction

Background. Tropical cyclones (TCs) are powerful, organized atmospheric systems that draw energy from the
upper levels of the ocean. They rank among the deadliest and costliest natural disasters in the United States, and
rising ocean heat content promises to amplify their danger over time [12]. TC intensity and motion forecasting
alike have improved since the 1990s, but intensity forecasting has lagged behind [3]. Cases of rapid intensification
(RI), defined for this work as an intensification of at least 25 knots within 24 hours, are especially difficult to predict
[7, 8, 9, 20]. Some of the most impactful TCs in recent years underwent RI prior to landfall (e.g., Hurricanes
Irma [2017], Dorian [2019], and Ida [2021]). Understanding TC evolution in the lead-up to RI events is therefore
a critical component of forecasting and damage mitigation efforts. In this work, we leverage powerful machine
learning (ML) methods to provide scientific insight into the evolution of TCs leading up to and during such events.

Multiple internal and external factors drive TC behavior [9]. This work focuses on a key internal factor: the
spatio-temporal structure of deep convection—that is, vertical circulation of air—within the storm. Convective
patterns within TCs serve as reliable indicators of intensity and drivers of intensity change; for example, identifying
convective patterns is critical to the Dvorak Technique for TC intensity estimation [4, 15, 16, 5]. Since temperature
generally decreases with height in the troposphere, the temperature of a cloud top is a proxy for its altitude. Thus
taller clouds have colder tops, implying deeper (and thus stronger) convection. Stronger convection, particularly
near the TC center, tends to be associated with stronger TCs. Infrared (IR) imagery from geostationary satellites
such as the Geostationary Operational Environmental Satellites (GOES) provide high spatio-temporal resolution
estimates of cloud-top temperature (10.4µm wavelength) [19].

Scientific Goals. TC intensity forecasts are ultimately issued by human experts who synthesize domain knowledge
with the outputs of many forecasting tools to issue a single forecast. It is thus unproductive to provide another
statistical model which only predicts TC intensity directly from IR imagery; such black-box models are difficult
for forecasters to utilize. Our goal is instead to provide meteorologists with an enhanced understanding of how
convective evolution relates to RI events (Figure 1, blue arrow). Currently operational statistical forecast tools are
generally limited to a handful of scalar summary statistics from each GOES image to aid forecasters in quickly
digesting convective behavior [2, 1, 9]. Conversely, we work with the rich suite of ORB functions, a dictionary
of scientifically meaningful one-dimensional functional features [14]. In this paper, we illustrate our methods
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Figure 1: From Observation to Ma-
chine Learning to Science. Meteorol-
ogists seek to connect observations and
summaries of TC evolution to processes
such as RI (blue path). We pose this sci-
entific question as a hypothesis test (bot-
tom right). By casting the hypothesis
test as a prediction problem, we are able
to leverage high-capacity AI techniques,
here ANNs (top right). Such black-box
models often struggle to extract scien-
tifically meaningful insight (red path).
Our framework facilitates insight on la-
beled sequences of functional data via
local results in the original space of sci-
entific functional features (black path).

on one such ORB function—the radial profile—but our framework can generalize to jointly analyze multiple
functional inputs. The radial profile, defined as T (r) = 1

2π

∫ 2π

0
Tb(r, θ)dθ, captures the structure of cloud-top

temperatures Tb as a function of radius r from the TC center and serves as an easily interpretable description
of the depth and location of convection near the TC core [14, 18]. A single profile describes the instantaneous
convective structure (Xt; Figure 2, center) of a TC, whereas a 24-hour (48 observation) sequence of profiles
provides a concise, human-readable summary of evolution over time; we call the latter sequence a structural
trajectory (St = {Xt,Xt−1, . . . ,Xt−48} ∈ S; Figure 2, right).

Contribution. We seek to answer the meteorological questions: “Are the sequences St leading up to RI events
different from those leading up to non-RI events?” and, if so, “How do RI events differ from non-RI events over S?”
We pose this question as a hypothesis test comparing the distributions of St on S between classes (Equation 1).
By recasting the hypothesis as a prediction problem, we are able to leverage artificial neural networks (ANNs) to
assess the relationship between labeled sequence data {(St, Yt)}t≥0 and TC behavior. Within this framework,
shown in Figure 1, we not only detect the differing behavior of convection leading up to RI, but we are able to
identify locations in S corresponding to RI, thus bridging the gap from ML back to meteorological insight
(Figures 3,4). To our knowledge, this is the only principled framework that can detect distributional differences
in sequences of images, and in addition provide local diagnostics which can identify spatio-temporal patterns
commonly found in the lead-up to RI events.

2 Data

Inputs. Raw GOES image data are drawn from NOAA’s MERGIR database [6], which contains 30-minute×4-km
resolution IR imagery dating back to 2000 (Figure 2, left). The NOAA HURDAT2 database provides TC best track
data: the best estimate of TC intensity and location produced after each season using all available data, including
data not available in real time [13]. HURDAT2 has a 6-hour resolution.

RI Labels. We attach labels Yt ∈ {0, 1} to structural trajectories St at each synoptic time (0000 UTC, 0600 UTC,
1200 UTC, and 1800 UTC) based on whether the TC was undergoing RI at time t (where Y = 1 indicates RI)
according to Algorithm 2. The non-synoptic times are labeled Yt = 1 if they fall between two consecutive synoptic
Yt = 1 observations, and Yt = 0 otherwise.

Sample Size. We train our ANN on 33,873 labeled structural trajectories from 2000-2012 (further divided into
60% train/40% validation). We hold out 14,447 labeled trajectories from 2013-2019 as test data. When only labels

Figure 2: Structural Trajectories as
Image Data. The raw data for each
trajectory St is a sequence of cloud-
top temperature images from GOES
(Tb). We convert each of these into
a radial profile (Xt). The 24-hour
sequence of radial profiles are com-
bined into a structural trajectory or
image (St). These images are the high-
dimensional inputs to m̂post(st).
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Yt — and not trajectories St — are required (m̂seq; Alg. 1(3)), we train on 31,203 synoptic best track entries
from 1979-2012; we did not use data prior to 1979 due to reduced availability of satellite observations to support
post-season analysis and thus the HURDAT2 best track database.

3 Methods

Testing Hypotheses. Our goal is to detect distributional differences in labeled sequence data {(St, Yt)}t≥0, where
the “labels” Yt ∈ {0, 1} are binary, and each covariate St ∈ S is a sequence of functional quantities (our structural
trajectory, Figure 2). Formally, we test the hypothesis

H0 : p(st|Yt = 1) = p(st|Yt = 0) for all st ∈ S versus (1)
H1 : p(st|Yt = 1) 6= p(st|Yt = 0) for some st ∈ S.

In our setting, there are two methodological challenges: (i) Equation 1 is a high-dimensional two-sample test for
dependent sequence data, and (ii) to glean scientific insight, an answer of whether we reject/fail-to-reject H0 is not
enough: if we reject H0, then we need to identify the regions in S where the two distributions differ.

From Tests to Prediction. For independent and identically distributed (IID) data {Si}ni=1, Equa-
tion 1 can be re-cast as a classification problem via Bayes Theorem, resulting in an equivalent test of
H0 : P(Yi = 1|si) = P(Yi = 1), ∀ si ∈ S. This idea is at the core of the recent classification accuracy [11]
and regression-based [10] two-sample tests. The latter regression test goes beyond classification to provide local
results, indicating where in S the two distributions differ. The key quantity to estimate in this procedure is the class
posterior mpost(si) := P(Yi = 1|si). For this, one can leverage any probabilistic classification technique; hence
converting a challenging inference and testing problem to a prediction problem. We reject H0 if the test statistic
λ :=

∑
t∈V(m̂post(si)− m̂prior)

2 is large on a held-out evaluation set V (not used in training). Here m̂prior is the
proportion of Yi = 1 cases in the train sample, and m̂post is the estimated class posterior.

Accounting for Dependence. However, existing high-dimensional tests do not extend to dependent sequence
data. In particular, the regression test [10] relies on a permutation test and the assumption of exchangeability —
an assumption that is generally violated for spatio-temporal processes. Here we propose a generalization of the
regression test from IID to dependent data by replacing the permutation test with a Monte Carlo (MC) test. Our
MC test estimates the label distribution mseq(yt−1, . . . , y1) := P(Yt = 1|Yt−1 = yt−1, . . . , Y1 = y1) under H0 in
place of permutation. The MC test is asymptotically valid (that is, it controls Type I errors), as long as the estimator
m̂seq converges to mseq. See Algorithm 1 for a full description of the testing procedure.

Local Importance. If we reject H0, then the magnitude of the terms λt := m̂post(st)− m̂prior in the test statistic
λ provide information as to which types of structural trajectories contributed the most to the rejection. Hence,
we assign a local importance score I(st) := sign(λt)/p̂t to each sequence st, where p̂t is an approximate
local p-value associated with λt, computed according to Algorithm 1. Positive scores I(st) � 0 indicate
p(st|Yt = 1) > p(st|Yt = 0), and negative scores I(st)� 0 the reverse. In other words, our test and diagnostics
can identify 24-hour trajectories which are more common to the lead-up to RI events.

4 Results

Testing Hypotheses. We execute Algorithm 1, estimating mseq with a Markov chain model with 48-hour memory
and mpost with a convolutional neural network (CNN). The CNN classifier achieved ∼75% balanced accuracy on
test data; note that classifier performance affects the power of the test, but not validity. We find that the distributions
of RI vs non-RI trajectories are different at significance level α = 0.01.

Local Importance. Figure 3 (left) projects St ∈ S ⊂ R48×120 onto their first two principal components. We use
principal component analysis (PCA) for visualization only; m̂post is trained on the full structural trajectories. In
Figure 3 (left), a single point represents an entire 24-hour trajectory. Temporally adjacent trajectories are highly
correlated in PCA space, as evidenced by the “strands" in Figure 3. We divide the importance scores I(st) for
each trajectory into 3 categories: negative (I(s) < −40; blue, RI less likely), null (−40 < I(s) < 40; gray), and
positive (I(s) > 40; red, RI more likely). Positive importance scores tend to have low values of the first principal
component score, corresponding to cold trajectories whose temperatures are decreasing.

Scientific Insight. Six sample trajectories from two example TCs (Hurricanes Nicole [2016] and Jose [2017])
are labeled in Figure 3 (left) and displayed in Figure 3 (right). The PCA map clearly show two patterns: (i) core
convection is stronger for low values of PCA1 and (ii) eye-eye wall structures are present for low values of PCA2.

We show the raw images Si for each point in Figure 3 (right) along with Saffir-Simpson intensity categories. Out
method is able to identify the structural patterns which lead up to RI: In all three examples with positive importance
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scores (B, C, F), cloud-top temperatures are cold and getting colder. Trajectory F also shows the formation of an
eye, during which time the TC intensified by 40 kt. The examples with negative importance scores (A, D, E) have
warmer cloud-top temperatures with little indication of cooling in the core. This analysis corroborates other
studies that indicate strong, deepening convection is crucial for RI, particularly near the TC core where
energy is most likely to result in strengthening surface winds.[17]

Figure 3: Differences in Distribution. (Left) PCA map, where each point, colored by its importance score, represents a 24h
structural trajectory. In general, importance decreases from left to right, while current intensity increases from top to bottom.
Note that PCA is only used for visualization purposes; the test is performed on the entire trajectory St. (Right) Panels of
selected trajectories or points for Hurricane Jose [2017] and Hurricane Nicole [2016]. The inset letter indicates the location and
local importance in the PCA map. Positive cases tend to have cold cloud tops near the core, growing in coverage and depth of
convection with time.

Case Study: Hurricane Nicole [2016]. We examine the full series {(St, Yt)}t≥0 for Hurricane Nicole [2016] in
Figure 4. When I(st)� 0, we indeed find that TC intensity is increasing (center; points A, C, D). More interesting
still, the trajectories prior to points A and C — the onset of RI — already begin to indicate that RI is likely; there
are obviously markers of RI in the radial profiles which may be of use to forecasters. Future work will identify
archetypal trajectories of this sort: I(s)� 0 prior to intensification.

Figure 4: Case Study: Hurricane Nicole [2016]. (Left) Full set of trajectories {St}t≥0 for Hurricane Nicole [2016], with
select trajectories labeled; again, each point represents a 24-hour trajectory. The physical track of the storm across the North
Atlantic is shown inset, with the same trajectories labeled (here represented as segments of the track). (Center) Storm intensity
over time, where solid points mark RI events. (Right) Full trajectory of Hurricane Nicole over 2 weeks. Note that the importance
scores capture rapidly intensifying periods (A, C, D), collapsing convection (B), and the decay of the TC eye (E).
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5 Conclusion

Our method successfully detects distributional differences in 24-hour “structural trajectories” (derived from
GOES-IR images) leading up to periods of rapid intensification. A preliminary partitioning of trajectories by our
proposed “local importance score” shows several known archetypal structural trajectories, laying the groundwork
for forecasting tools. Further extending this framework to trajectories of other high-dimensional data promises to
provide the insight necessary to understand and predict these increasingly deadly events.
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A Algorithms

Algorithm 1: Test for distributional differences in labeled sequence data.
Require: type of test (MC=TRUE for MC test; MC=FALSE for permutation test); train data {Yt,St}t∈T1 and regression

method for estimating mpost(s) := P(Yt = 1|St = s); for MC test, additional train data {Yt}t∈T2 and regression method for
estimating mseq(Yt−1, . . . , Yt−k) := P(Yt = 1|Yt−1, . . . , Yt−k); number of repetitions B; test points {st}t∈V .

Ensure: p-value for testing H0 : p(st|Yt = 1) = p(st|Yt = 0), for all t and st, local importance scores {I(st)}t∈V
// Estimate underlying probability distributions
(1) Estimate mprior := P(Yt = 1) with class proportion m̂prior =

1
|T1|

∑
t∈T1 Yt.

(2) Regress Yt on St using T1 to compute m̂post.
(3) if MC then

Regress Yt on Yt−1, . . . , Yt−k using T2 to compute m̂seq.
end if

// Compute test statistic and estimate its null distribution
(4) Compute test statistic λ =

∑
t∈V λ

2
t , where λt = m̂post(st)− m̂prior.

(5) for b ∈ {1, 2, . . . , B} do
- Draw new train labels {Ỹt}t∈T1 under H0:

if MC then
Initialize Ỹ1, . . . , Ỹk to random sequence.
Draw sequence of length 100×k from Ỹt ∼ Binom(m̂seq(Ỹt−k, . . . , Ỹt−1)) for burn-in.
Draw new labels Ỹt ∼ Binom(m̂seq(Ỹt−k, . . . , Ỹt−1)), for t ∈ T1 \ T0.

else
Permute original labels {Yt}t∈T1 .

end if
- Regress Ỹt on St using T1 to compute m̂(b)

post.

- Recompute test statistic λ̃(b) =
∑

t∈V λ̃
(b)2
t where λ̃(b)

t = m̂
(b)
post(st)− m̂prior.

// Compute approximate p-values
(6) Compute p-values according to

p̂global =
1

B + 1

(
1 +

B∑
b=1

(
λ̃(b) > λ

))
and p̂t =

1

B + 1

(
1 +

B∑
b=1

(
|λ̃(b)

t | > |λt|
))

.

(7) Define local importance scores by

I(st) =
sign(λt)

p̂t

return p̂global, {I(st)}t∈V
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Algorithm 2: Identifying observations that fall within rapid intensification events.

Require: Sequence of contiguous intensity (i.e. maximum wind speed) observations {Wi}Tt=1 for a storm and
an intensity change threshold c.

Initialize: Z = 0T,T , Y = 0T
for t in 1 : T − 1 do

∆t,1 = Wt+1 −Wt; // lead-1 intensity change
if t ≤ T − 4 then

∆t,4 = max(Wt, . . . ,Wt+4)−Wt; // lead-4 intensity change
end

end
A = {t : ∆t,4 ≥ c}; // 24-hour windows containing RI
B = {t : ∆t,1 > 0}; // 6-hour windows containing intensification
for t in 1 : T − 4 do

if t ∈ A then // label 24-hour RI window
Zt,t, . . . , Zt,t+4 = 1;
for h in 4 : 1 do

if t+ h− 1 /∈ B then // trim non-intensification from end of event
Zt,t+h = 0;

else
break;

end
end
for h in 0 : 3 do

if t+ h /∈ B then // trim non-intensification from start of event
Zt,t+h = 0;

else
break;

end
end

end
end
for t in 1 : T do

Yt = max(Zt,1, . . . , Zt,T ); // points only need to be valid for one start
end
Output: {Yi}Tt=1
Note: The above algorithm identifies rapid intensification. To identify rapid weakening instead, reverse the

input sequence {Wi}Tt=1 at initialization, then reverse the output sequence {Yi}Tt=1 at output.
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