

# **Emissions-aware Electricity Network Expansion Planning via Implicit Differentiation**

Anthony Degleris\*

Lucas Fuentes Valenzuela

Abbas El Gamal

Ram Rajagopal

\* Funded by the DOE Computational Science Graduate Fellowship under Award Number DE-SC0021110.  
Full acknowledgement and disclaimer in associated paper.

# Upgrading the Electricity Grid

- Transmission upgrades
- Today
  - Renewables
  - Storage
  - EV Chargers



Transmission Line. Eddie Fouse. From Public Domain Pictures.  
Solar Farm. Photon-Photos / iStock / Getty Images Plus. From Ecowatch.  
Battery Farm. Reuters. From BBC.  
EV Fast Chargers. From Bloomberg

# Expansion Planning

Planning / Outer Problem

$$\text{minimize}_{\theta}$$

**Electricity Network**  
(transmission capacity,  
storage capacity,  
renewable generation, etc)

Dispatched Generation

$$Q(\theta) + J(u^*(\theta))$$

Investment Cost

Operation Cost

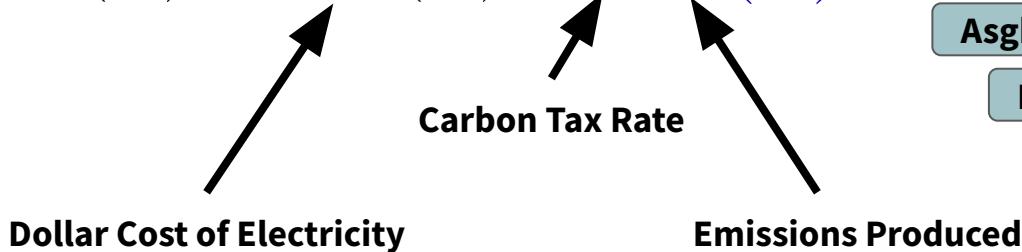
Traditional focus: monetary costs

$$J(u) = D(u)$$



Dollar Cost of Electricity

$$u^*(\theta) = \arg \min_{u \in \mathcal{C}(\theta)} J(u)$$


Dispatch / Operation / Inner Problem

**Can we use these tools  
to build a low-emissions electricity grid?**

# Traditional Method: Carbon Tax

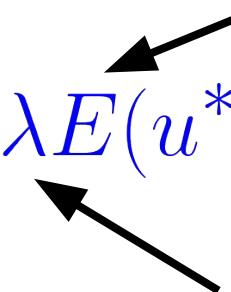
- Planning problem remains the same:  $\text{minimize}_{\theta} \quad Q(\theta) + J(u^*(\theta))$
- Use operations problem  $u^*(\theta)$  (electricity market) with carbon tax
- Indirectly penalizes emissions through marginal market incentives
  - Planner is still “unaware” of emissions

$$J(u) = D(u) + \tau E(u)$$



Bent, Toole. 2012.

Asgharian, Abdelaziz. 2017


Neumann, Brown. 2019

**Could the planner directly reduce emissions?**

# New Proposal: Emissions-aware Expansion Planning

$$\text{minimize}_{\theta} \quad Q(\theta) + J(u^*(\theta)) + \lambda E(u^*(\theta))$$

**Emissions Produced**  
**Carbon Penalty**



- Directly penalize emissions in (outer) planning problem
- $u^*(\theta)$  still defined using tax-free dispatch model

# Solving the Emissions-aware Problem

$$f(\arg \min_x f(x)) = \min_x f(x)$$

## Standard Formulation (including carbon tax)

$$\text{minimize}_{\theta} \quad Q(\theta) + J(u^*(\theta))$$

$$u^*(\theta) = \arg \min_{u \in C(\theta)} J(u)$$

$$\text{minimize}_{\theta, u \in C(\theta)} \quad Q(\theta) + J(u)$$

Standard Optimization Tools

## Emissions-aware

$$\text{minimize}_{\theta} \quad Q(\theta) + J(u^*(\theta)) + \lambda E(u^*(\theta))$$

$$u^*(\theta) = \arg \min_{u \in C(\theta)} J(u)$$

$$\text{minimize}_{\theta, u \in C(\theta)} \quad Q(\theta) + J(u) + \lambda E(u)$$

Implicit Differentiation  
+ Gradient Descent

Gribik et al. 1990.

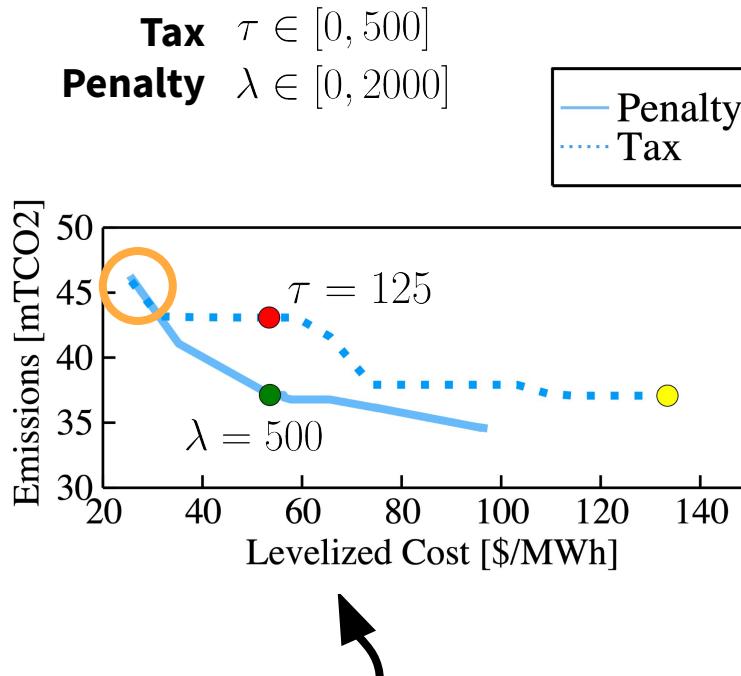
Good tutorial: [implicit-layers-tutorial.org](http://implicit-layers-tutorial.org)

# Carbon Tax vs Emissions-Aware Planning

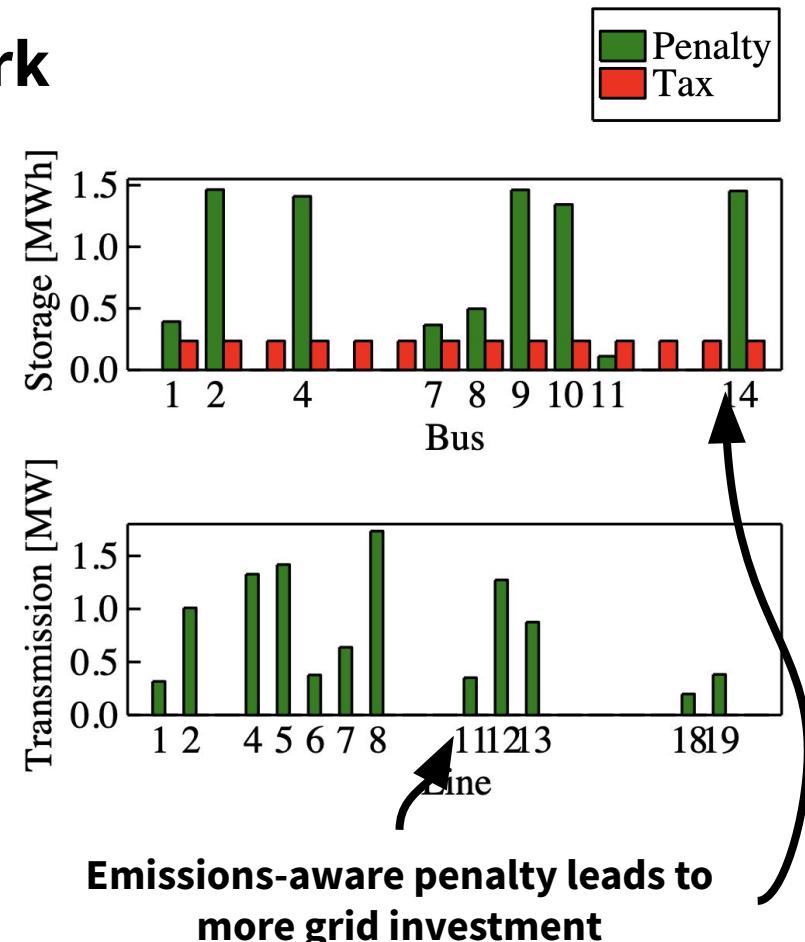
## Carbon Tax

- Indirect (inner) market penalty
- Consumer incurs *fixed* investment cost & *marginal* carbon tax cost

## Emissions-Aware Problem


- Directly (outer) reduce emissions
- Consumer only incurs *fixed* investment cost

**\*\*NOT MUTUALLY EXCLUSIVE\*\***


# Experiment: IEEE 14-bus network

- Compare carbon tax and emissions-aware
- 50% renewable penetration
- **Planning Problem:** Expand transmission and storage

# Experiment: IEEE 14-bus network



Total Cost / Total Electricity Consumption



# Conclusion

- Emissions-aware planning finds **high impact investments for reducing emissions**
- Using just a **carbon tax may be overly expensive**
- Pathway to impact
  - Practical investment constraints
  - Real world case studies