

Learned Benchmarks for Subseasonal Forecasting

Soukayna Mouatadid¹, Paulo Orenstein², Genevieve Flaspohler³, Miruna Oprescu⁴, Judah Cohen⁵, Franklyn Wang⁶, Sean Knight³, Maria Geogdzhayeva³, Sam Levang⁷, Ernest Fraenkel³, Lester Mackey⁴

Introduction

Subseasonal Forecasting (3-6 weeks ahead) is a crucial pre-requisite for:

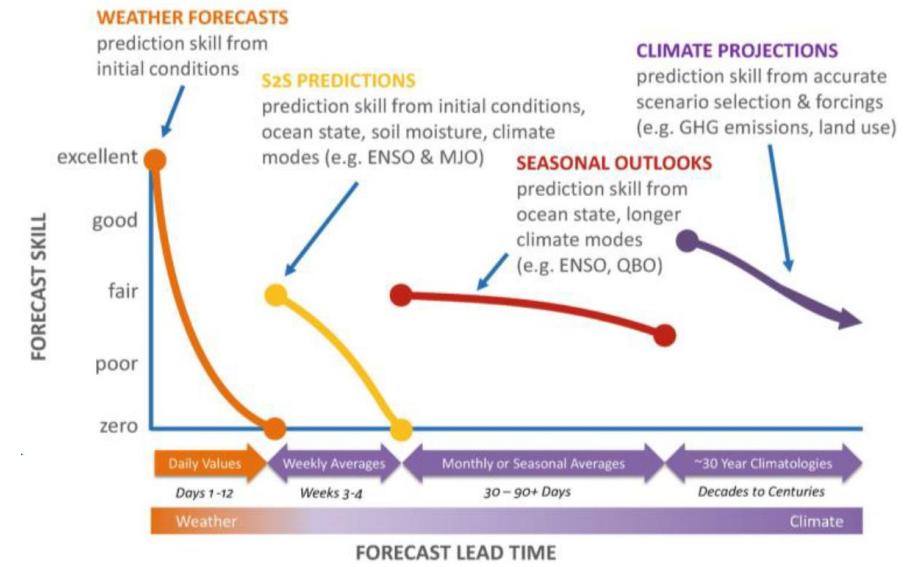
- Allocating water resources
- Preparing for droughts and floods
- Managing wildfires
- Agriculture planning

But...

It is a challenging forecast horizon for both meteorological and ML models

Objective:

- We develop a toolkit of subseasonal models that outperform operational weather models as well as state-of-the-art learning methods from the literature.



Source: Pechlivanidis and Crochemore, 2020

Forecasting Tasks

- Target variables:
 - Average temperature (°C)
 - Accumulated precipitation (mm)
- Lead times:
 - weeks 3-4 ahead
 - weeks 5-6 ahead
- Geographical region:
 - Contiguous U.S., on a $1^\circ \times 1^\circ$ grid ($G = 862$ grid points)
- Evaluation metrics:
 - Root mean squared error:
 - Skill:

$$\text{RMSE}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = \sqrt{\frac{1}{G} \sum_{g=1}^G (\hat{y}_{t,g} - y_{t,g})^2}$$

$$\text{skill}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = \frac{\langle \hat{\mathbf{y}}_t - \mathbf{c}_t, \mathbf{y}_t - \mathbf{c}_t \rangle}{\|\hat{\mathbf{y}}_t - \mathbf{c}_t\|_2 \cdot \|\mathbf{y}_t - \mathbf{c}_T\|_2} \in [-1, 1]$$

Dataset

- *SubseasonalClimateUSA* dataset:
 - Regularly updated collection of ground-truth measurements and model forecasts.
 - Publicly accessible through the [*subseasonal_data*](#) Python package
- **Variables include:**
 - Temperature
 - Precipitation
 - CFSv2
 - Stratospheric geopotential height
 - Madden-Julian Oscillation
 - Multivariate ENSO index
 - Pressure
 - Relative humidity
 - Sea surface temperature
 - Sea ice concentration

Baseline Models

- **Climatology**
 - Standard baseline for subseasonal forecasting
 - Average temperature or precipitation for specific day and month over 1981-2010
- **CFSv2**
 - Operational U.S. physics-based model from NCEP
 - Main NWP baseline deployed in the U.S.
- **Persistence**
 - Today equals tomorrow

Learning Models

- **AutoKNN**, introduced in (Hwang et al., 2019)
- **Informer**, introduced in (Zhou, 2021)
- **LocalBoosting**, introduced in (Prokhorenkova et al., 2018)
- **MultiLLR**, introduced in (Hwang et al., 2019)
- **N-BEATS**, introduced in (Orenshkin, 2020)
- **Prophet**, introduced in (Taylor and Letham, 2018)
- **Salient 2.0**, introduced in (Schmitt, 2019)

Our Toolkit

- **Climatology++**
 - Use adaptively selected window around target day for averaging
- **CFSv2++**
 - Average over range of issuance date and lead times
 - Adaptively debiasing using selected window
- **Persistence++**
 - Learned combination of lagged measurements with NWP

Ensembling

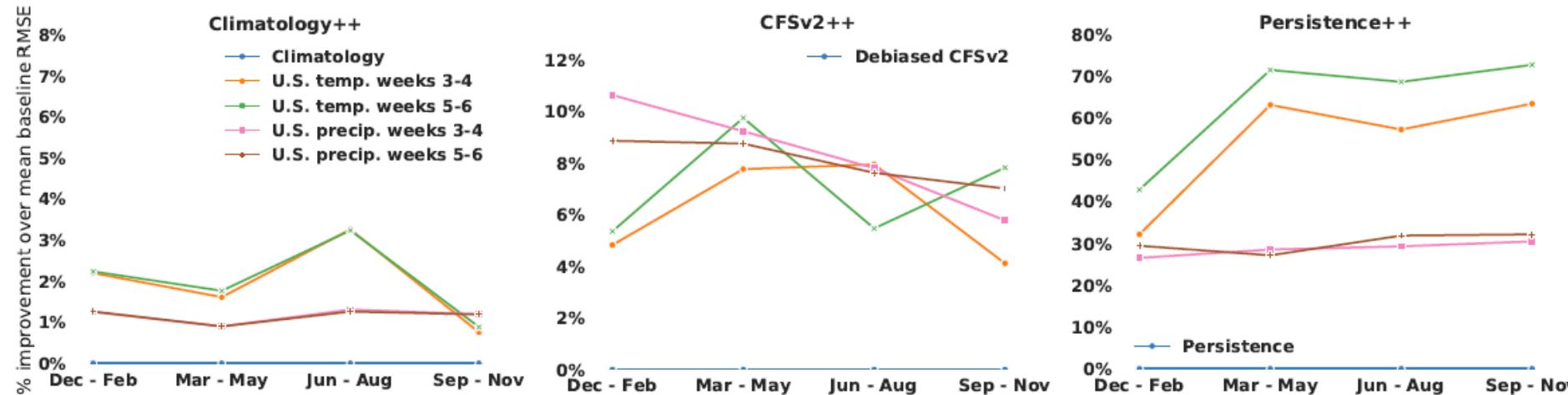
- **Uniform ensemble**
 - Equal-weighted average of the toolkit model forecasts
 - Standard solution in the weather community
- **Online ensemble**
 - Based on the AdaHedgeD online learning algorithm (Flaspoehler et al., 2021)
 - Results in an adaptive convex combination of base models
- **Base models**
 - Climatology++, CFSv2++, Persistence++, LocalBoosting, MultiLLR and Salient 2.0

Results

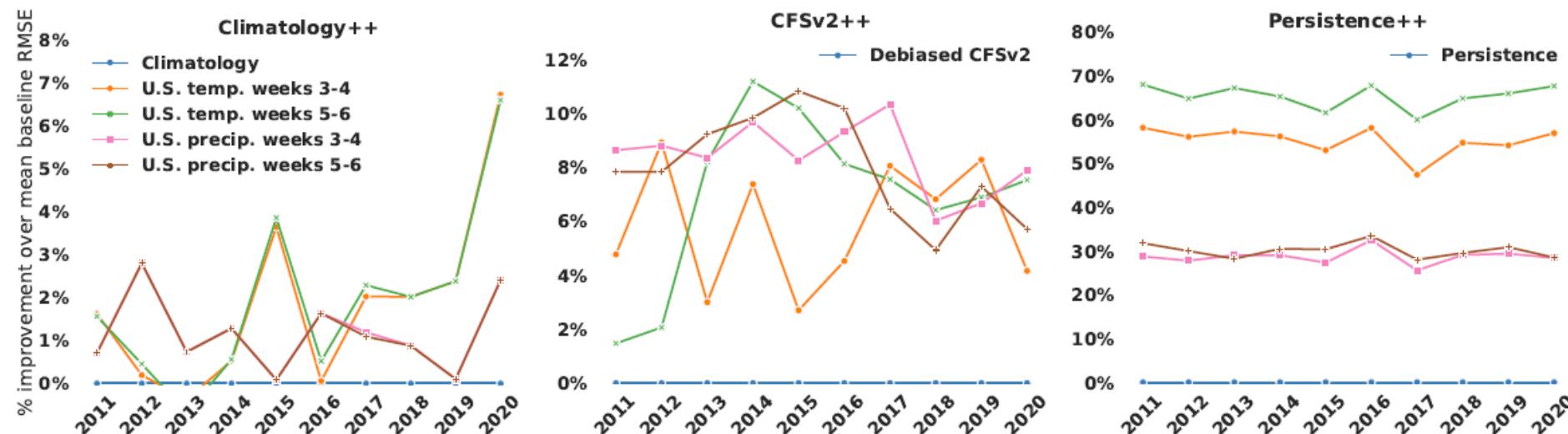
Table 1. Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE across 2011-2020 in the contiguous U.S. The best performing model in each model group is bolded, and the best performing model overall is shown in green.

Group	Model	% Improvement over Mean Deb. CFSv2 RMSE				Average % Skill			
		Temperature		Precipitation		Temperature		Precipitation	
		Weeks 3-4	Weeks 5-6	Weeks 3-4	Weeks 5-6	Weeks 3-4	Weeks 5-6	Weeks 3-4	Weeks 5-6
Baselines	CLIMATOLOGY	0.13	2.93	7.79	7.51	–	–	–	–
	DEB. CFSv2	–	–	–	–	23.07	15.98	4.79	3.01
	PERSISTENCE	–109.94	–170.10	–28.27	–31.92	9.40	5.77	7.84	7.31
Toolkit	CLIMATOLOGY++	2.01	4.83	8.86	8.57	19.84	20.23	15.44	15.23
	CFSv2++	5.89	7.08	8.36	8.06	31.40	27.88	15.38	15.29
	PERSISTENCE++	6.00	6.43	8.61	7.89	30.19	24.91	12.39	8.88
Learning	AUTOKNN	0.93	3.22	7.73	7.33	12.41	9.63	5.76	5.06
	INFORMER	–39.99	–63.66	0.65	0.19	–5.17	–1.46	5.70	5.16
	LOCALBOOSTING	–0.76	–0.29	7.36	6.89	14.67	12.29	11.11	9.58
	MULTILLR	2.45	2.21	7.12	6.65	22.37	15.62	9.62	7.52
	N-BEATS	–46.71	–52.05	–19.19	–21.32	7.95	2.79	5.14	4.18
	PROPHET	1.13	3.78	8.42	8.12	21.13	20.55	13.41	13.26
	SALIENT 2.0	–6.84	–3.95	2.99	2.66	12.46	13.45	9.24	8.92
Ensembles	UNIFORM TOOLKIT	6.47	7.55	9.47	9.05	31.96	28.93	18.05	17.54
	ONLINE TOOLKIT	6.71	7.67	9.51	9.04	32.07	28.63	18.19	17.30

Results: toolkit vs baselines



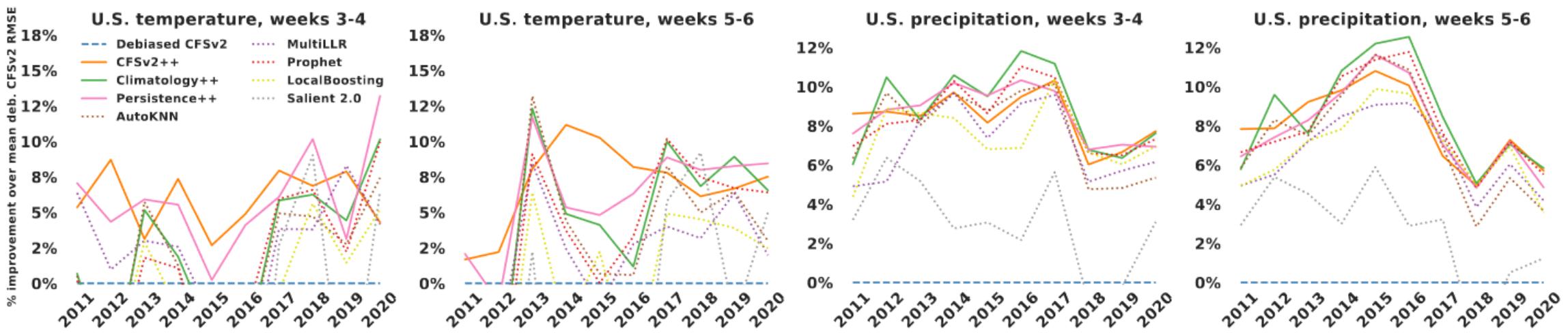
(a) RMSE improvement by quarter



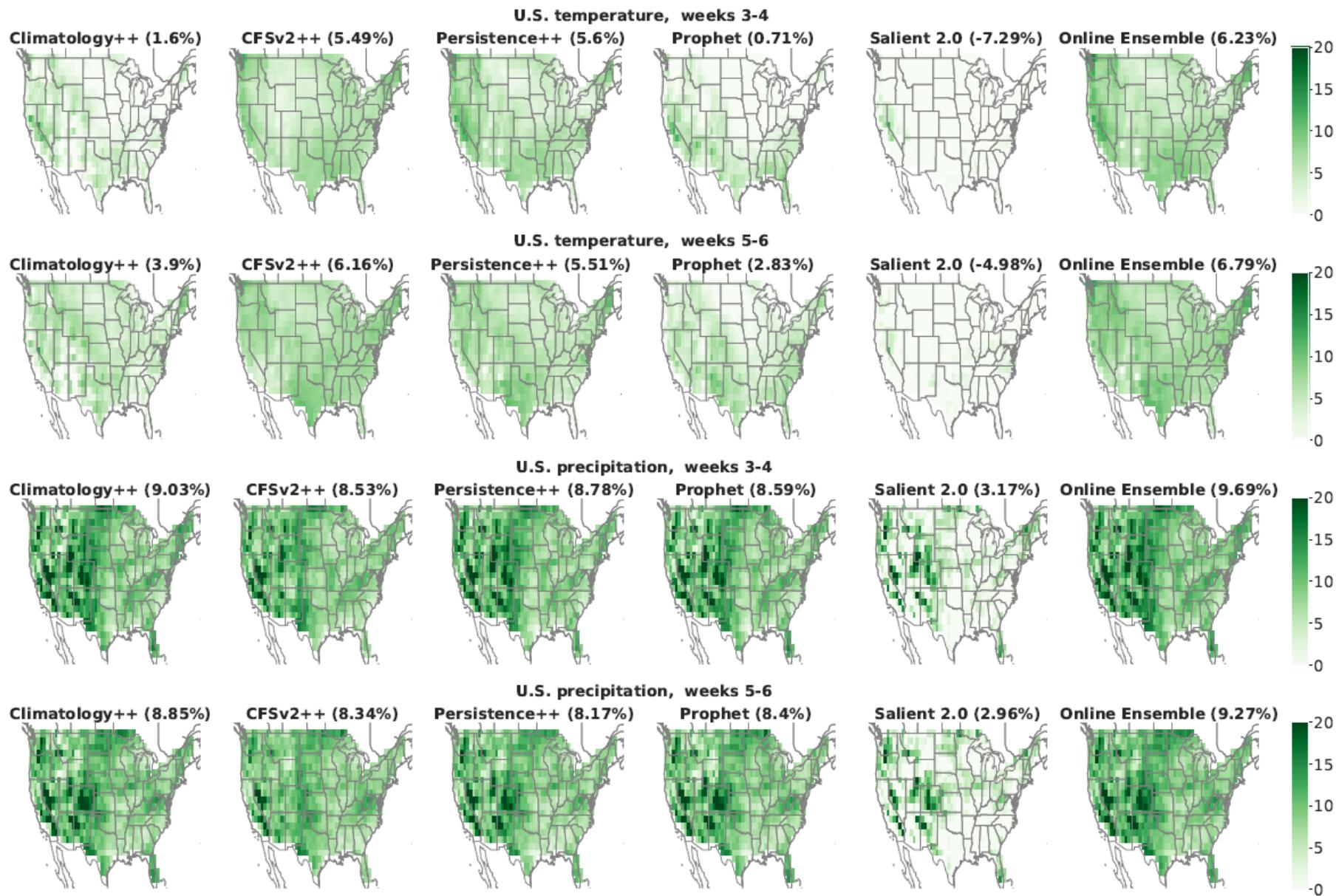
(b) RMSE improvement by year

Results: toolkit vs learning

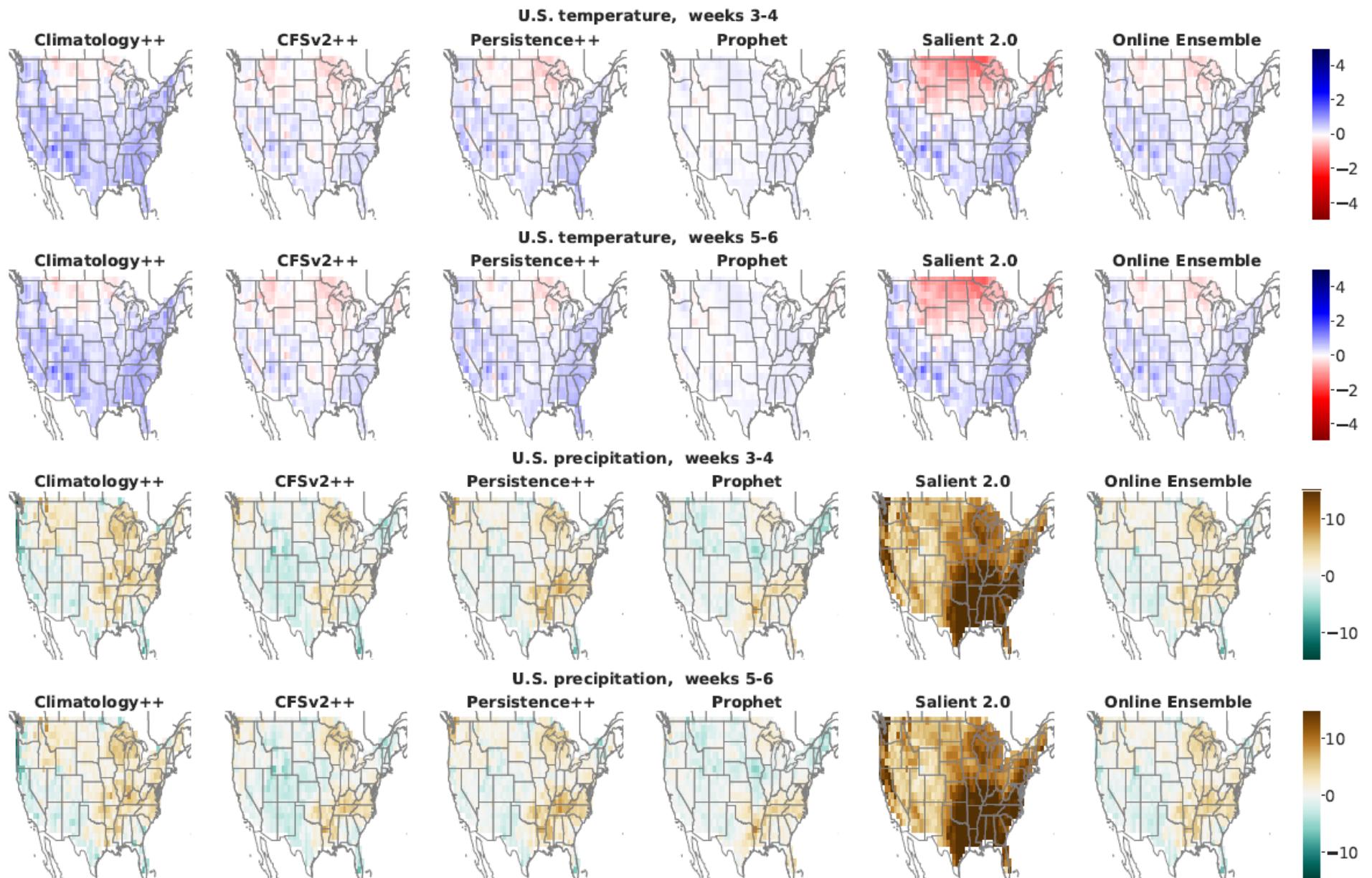
RMSE improvement by year



Results: Percentage improvement over mean deb. CFSv2 RMSE



Results: Mean model bias



Results: Comparing to ECMWF

GROUP	MODEL	% IMPROVEMENT OVER MEAN DEB. CFSv2 RMSE				AVERAGE % SKILL			
		TEMPERATURE		PRECIPITATION		TEMPERATURE		PRECIPITATION	
		WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6
BASELINES	CLIMATOLOGY	1.56	3.92	8.7	7.56	—	—	—	—
	DEBIASED CFSv2	—	—	—	—	22.64	15.71	2.84	1.68
	PERSISTENCE	-105.57	-169.22	-28.05	-33.43	9.12	2.27	8.11	6.21
TOOLKIT	CLIMATOLOGY++	3.88	6.44	9.79	8.61	22.09	23.2	15.34	15.06
	CFSv2++	5.65	6.65	8.94	7.6	30.91	26.87	14.6	13.85
	PERSISTENCE++	7.06	7.86	9.06	7.57	31.46	28.04	10.03	6.61
ECMWF	DEBIASED CONTROL	-29.05	-33.25	-30.81	-31.84	18.52	13.71	0.82	3.17
	DEBIASED ENSEMBLE	4.62	3.69	7.90	6.41	32.27	26.61	13.12	9.10
ENSEMBLES	UNIFORM TOOLKIT	7.43	8.27	10.04	8.77	32.77	29.75	16.53	15.71
	ONLINE TOOLKIT	7.2	7.96	10.08	8.62	32.22	28.38	17.19	15.42

Conclusion

- Subseasonal forecasting is a hard but fundamental problem
- Adaptive de-biasing of classical benchmarks yields sizable improvement
- Toolkit models are not only accurate, but highly scalable
- Online ensembling is highly advantageous
- Combining NWP and ML models is a powerful strategy
- All data and code are open source