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Introduction

Subseasonal Forecasting (3-6 weeks ahead) is a crucial pre-requisite for:

* Allocating water resources

* Preparing for droughts and floods
* Managing wildfires

e Agriculture planning

But...

It is a challenging forecast horizon for both meteorological
and ML models

Objective:

* We develop a toolkit of subseasonal models that
outperform operational weather models as well as state-
of-the-art learning methods from the literature.
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Forecasting Tasks

Target variables:
* Average temperature (°C)
* Accumulated precipitation (mm)

Lead times:
 weeks 3-4 ahead
 weeks 5-6 ahead

Geographical region:
e Contiguous U.S., ona 1° x 1° grid (G = 862 grid points)

Evaluation metrics:
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Dataset

e SubseasonalClimateUSA dataset:

* Regularly updated collection of ground-truth measurements and model forecasts.

* Publicly accessible through the subseasonal data Python package

e Variables include:
* Temperature
* Precipitation
 CFSv2
e Stratospheric geopotential height
* Madden-Julian Oscillation
e Multivariate ENSO index
* Pressure
* Relative humidity
* Sea surface temperature
* Sea ice concentration



Baseline Models

e Climatology
» Standard baseline for subseasonal forecasting
* Average temperature or precipitation for specific day and month over 1981-2010

* CFSv2
e Operational U.S. physics-based model from NCEP

 Main NWP baseline deployed in the U.S.

* Persistence
e Today equals tomorrow



Learning Models

e AutoKNN, introduced in (Hwang et al., 2019)

* Informer, introduced in (Zhou, 2021)

* LocalBoosting, introduced in (Prokhorenkova et al., 2018)
* MultiLLR, introduced in (Hwang et al., 2019)

* N-BEATS, introduced in (Orenshkin, 2020)

* Prophet, introduced in (Taylor and Letham, 2018)
 Salient 2.0, introduced in (Schmitt, 2019)



Our Toolkit

* Climatology++
e Use adaptively selected window around target day for averaging

* CFSv2++

* Average over range of issuance date and lead times
* Adaptively debiasing using selected window

* Persistence++
* Learned combination of lagged measurements with NWP



Ensembling

* Uniform ensemble
* Equal-weighted average of the toolkit model forecasts
e Standard solution in the weather community

* Online ensemble
* Based on the AdaHedgeD online learning algorithm (Flaspohler et al., 2021)
e Results in an adaptive convex combination of base models

 Base models
e Climatology++, CFSv2++, Persistence++, LocalBoosting, MultiLLR and Salient 2.0



Results

Table 1. Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE across 2011-2020 in the

contiguous U.S. The best performing model in each model group is bolded, and the best performing model overall is shown in green.

%% IMPROVEMENT OVER MEAN DEB. CFSv2 RMSE

AVERAGE Y% SKILL

TEMPERATURE PRECIPITATION TEMPERATURE PRECIPITATION
GROUP MODEL WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6
BASELINES CLIMATOLOGY 0.13 2.93 7.79 7.51 - - - -
DEB. CFSv2 - - - - 23.07 15.98 4.79 3.01
PERSISTENCE —109.94 -170.10 -28.27 -31.92 9.40 5.77 7.84 7.31
TOOLKIT CLIMATOLOGY++ 2.01 4.83 8.86 8.57 19.84 20.23 15.44 15.23
CEFSv2++ 5.89 7.08 8.36 8.06 31.40 27.88 15.38 15.29
PERSISTENCE++ 6.00 6.43 8.61 7.89 30.19 24.91 12.39 8.88
LEARNING AUTOKNN 0.93 3.22 7.73 7.33 12.41 9.63 5.76 5.06
INFORMER -39.99 —-63.66 0.65 0.19 -5.17 -1.46 5.70 5.16
LocALBOOSTING -0.76 -0.29 7.36 6.89 14.67 12.29 11.11 9.58
MULTILLR 2.45 2.21 7.12 6.65 22.37 15.62 0.62 7.52
N-BEATS —-46.71 —-52.05 -19.19 -21.32 7.95 2.79 5.14 4.18
PROPHET 1.13 3.78 8.42 8.12 21.13 20.55 13.41 13.26
SALIENT 2.0 —-6.84 -3.95 2.99 2.66 12.46 13.45 9.24 8.92
ENSEMBLES UNIFORM TOOLKIT 6.47 7.55 9.47 9.05 31.96 28.93 18.05 17.54
ONLINE TOOLKIT 6.71 7.67 9.51 0.04 32.07 28.63 18.19 17.30




Results: toolkit vs

baselines
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Results: toolkit vs learning
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Results: Percentage improvement over mean deb. CFSv2 RMSE
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Results: Mean model bias
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Results: Comparing to ECMWF

Yo IMPROVEMENT OVER MEAN DEB. CFSv2 RMSE AVERAGE Y% SKILL
TEMPERATURE PRECIPITATION TEMPERATURE PRECIPITATION
GroOuUP MODEL WEEKS 3-4  WEEKS 5-6  WEEKS 3-4  WEEKS 5-6  WEEKS 3-4  WEEKS 5-60 WEEKS 3-4  WEEKS 5-6
BASELINES CLIMATOLOGY 1.56 3.92 8.7 7.56 — — — —
DEBIASED CFSv2 — - = - 22.64 15.71 2.84 1.68
PERSISTENCE —105.57 —-169.22 —-28.05 —-33.43 9.12 2.27 8.11 6.21
TOOLKIT CLIMATOLOGY++ 3.88 6.44 9.79 8.61 22.09 23.2 15.34 15.06
CFSvV2++ 5.65 6.65 8.94 7.6 30.91 26.87 14.6 13.85
PERSISTENCE++ 7.06 7.86 9.06 7.57 31.46 28.04 10.03 6.61
ECMWF DEBIASED CONTROL -29.05 -33.25 -30.81 -31.84 18.52 13.71 0.82 3.17
DEBIASED ENSEMBLE 4.62 3.69 7.90 6.41 32.27 26.61 13.12 9.10
ENSEMBLES UNIFORM TOOLKIT 7.43 8.27 10.04 8.77 32.77 29.75 16.53 15.71

ONLINE TOOLKIT 7.2 7.96 10.08 8.62 32.22 28.38 17.19 15.42




Conclusion

Subseasonal forecasting is a hard but fundamental problem

Adaptive de-biasing of classical benchmarks yields sizable improvement

Toolkit models are not only accurate, but highly scalable

Online ensembling is highly advantageous

Combining NWP and ML models is a powerful strategy

All data and code are open source



