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Abstract

The burning of fossil fuels produces large amounts of carbon dioxide (CO-), a
major Greenhouse Gas (GHG) and a main driver of Climate Change. Quantifying
GHG emissions is crucial for accurate predictions of climate effects and to enforce
emission trading schemes. The reporting of such emissions is only required in
some countries, resulting in insufficient global coverage. In this work, we propose
an end-to-end method to predict power generation rates for fossil fuel power plants
from satellite images based on which we estimate GHG emission rates. We present
a multitask deep learning approach able to simultaneously predict: (i) the pixel-area
covered by plumes from a single satellite image of a power plant, (ii) the type
of fired fuel, and (iii) the power generation rate. We then convert the predicted
power generation rate into estimates for the rate at which COs is being emitted.
Experimental results show that our model approach allows us to estimate the power
generation rate of a power plant to within 139 MW (MAE, for a mean sample power
plant capacity of 1177 MW) from a single satellite image and CO5 emission rates
to within 311 t/h. This multitask learning approach improves the power generation
estimation MAE by 39% compared to a baseline single-task network trained on the
same dataset.

1 Introduction

Despite a recent decrease in their use in most European countries, fossil fuels like coal, oil and gas,
still account for 71% of the continent’s energy production [Eurostat, |2021]]. This popularity comes at
a dangerously high environmental cost that affects humanity in the long term: burning fossil fuels
leads to air and water pollution, and constitutes the main driver of climate change.

Quantifying GHG emissions from individual industrial sites typically requires the use of dedicated
measuring devices that report detailed emission information, as may be mandated by environmental
protection guidelines. Such data may be used to enforce environmental protection regulations or
pollutant certificate trading schemes. Unfortunately, reporting requirements differ between countries,
resulting in a highly heterogeneous coverage of GHG emission reportings, globally.

In this work, we aim to estimate GHG emission rates for fossil fuel power plants at a given time
through observations of the emitted plumes from Earth-observing satellites. GHG emission rates are
correlated to power generation rates and as such can be related to the extent of plumes emerging from
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Figure 1: Diagram of the proposed multitask learning method. The model takes as input a multi-spectral
satellite image and learns simultaneously three tasks utilizing a U-Net backbone: (i) semantic segmentation of
plumes, (ii) classification of type of fired fuel, and (iii) regression with respect to power generation rate.

smokestacks or cooling towers of power plants. Our definition of plumes include plumes of steam
released from cooling towers, and, to a smaller scale, plumes of smoke released from smokestacks.
We propose a novel multi-task learning approach to primarily predict the power generation rate from
a satellite image of a power plant (treated as a regression problem), together with the type of fired
fuel (treated as a classification problem) and plume footprint (treated as a segmentation problem). We
incorporate external weather data to consider environmental conditions. Using the predicted power
generation rate, we can estimate the amount of emitted CO; at a given time based on an empirical
relation. Both the predicted power generation rate and the CO5 emission rate predicted in this work
are of interest to various stakeholders and inform efforts to minimize the effects of Climate Change.
Our contribution is threefold: (1) we compile a data set of active power plants in Europe together with
their plume segmentation maps and the corresponding actual power generation rate, (2) we propose a
multitask learning approach able to simultaneously segment plumes, predict the type of fired fuel as
well as the power generation rate — out-performing single-task approaches for all these tasks — and
(3) we estimate CO5 emission rates using the predicted power generation rates and derived emission
factors.

2 Related Work

To the best of our knowledge, little work has been done concerning the estimation of GHG emissions
from fossil fuel power plants based on observational data. The estimation of the power plant
generation has mostly been restricted to extracting statistics from available annual data.
[2020] estimate the deviation of each plant from the average generation of other similar plants
based on detailed information on plant-level (such as its size, fuel-type, or installed capacity) and
environmental factors using machine learning algorithms such as gradient boosting trees.

[2020] estimate the utilisation of fossil fuel power plants by identifying plumes in satellite
image data then counting the number of hours it is actually generating power over a year. Finally,
they compute the capacity factor by dividing the annual generation by an empirical relationship
between the annual mean plume area and mean hourly generation rate. (Couture et al.|[2020] showed
that it was possible to achieve high quality estimates of power plant behavior, i.e. whether it was on
or off, using satellite images. Going one step further, [Mommert et al.| [2020] successfully segment
smoke plumes over industrial sites and distinguish them from natural clouds and show that classifying
different types of power plants is possible with high confidence [Mommert et al., 2021].

In contrast to previous works, we estimate the power generation rate (and from those CO2 emission
rate estimates) directly from satellite images without any prior assumptions, allowing our pipeline
to be applied on a global scale. We choose a multitask approach that has proven successful in other

remote sensing applications [Bischke et al.,2019].

3 Dataset

In this work, we use remote imaging data of fossil fuel power plants taken by ESA’s Sentinel-2
Earth-observing satellites. Extending the dataset from Mommert et al.|[2020], we acquired geographic




Table 1: Test set multitask vs. singletask baseline performance Table 2: Ablation study on impact of weather

for plume segmentation (seg.), power generation regression variables on the regression task performance
(reg.) and fuel type classification (cls.). on the test set and using the multitask model.
Loss ;Fea ;k Wl;leg;ts (C)\lbs) if%’ ME]S%VR2 Sn:lsﬁracy Temperature Humidity Wind MAE R?

Seg. only 1 0 0 0.640 - - X X X 169 0.74
Reg. only 0 1 0 - 225/0.66 | - v X X 148 0.77
Cls. only 0 0 1 - - 0.775 X v X 142 0.81
Reg. + Seg. 04 06 0 0.643 | 145/0.81 | - X X v 147 0.79
Reg. + Cls. 0 06 04 - 151/0.81 | 0.779 X v v 145 0.81
All tasks 015 0.7 0.15] 0.668 | 139/0.83 | 0.853 v v v 139 0.83

coordinates of 300 European power plants based on the Joint Research Centre (JRC) Open Power
Plants Database |Kanellopoulos et al.,|[2019]] for which power generation data [Entsoe| 2021] is
available. For each site we retrieved Sentinel-2 images taken during 2020 that we manually annotated.

Our final dataset[ﬂcontains 1639 satellite observations of 146 different fossil fuel power plants with
their segmentation label, that we carefully divide into train (80%) and test (20%) sets making sure
not to include the same site in more than one set. We supplement our processed satellite image data
with contemporaneous weather data (temperature, relative humidity and wind speed) from the ERA-5
data set [[Hersbach et al., [2020]]. The installed capacity of these power plants ranges from 29 MW to
5230 MW with a mean of 1177 MW. Our sample includes power plants that use 4 different types of
fuel: hard coal (41%), gas (29%), lignite (29%), and peat (< 1 %) .

For each observation, our dataset contains a Sentinel-2 satellite image with its segmentation map, the
type of fired fuel, the actual power generation rate at the corresponding timestamp, and weather data.

4 Approach

Our approach consists of a multi-task deep learning model (see Figure [I)) that takes as input a multi-
spectral satellite image centered on a power station to predict primarily its actual power generation
output. We added two other tasks: semantic segmentation of plumes and classification of type of fired
fuel, to boost the performance of the desired primary task. This is achieved by pushing the network
towards learning a robust representation that generalizes well to different related tasks.

Feature Extractor The first part of the proposed method is a U-Net [Ronneberger et al., 2015]] used
as a feature extractor. Its architecture consists of a contracting and an expanding path. We take
advantage of hard parameter sharing through the entire U-Net backbone leading to a representation
that is shared between all the tasks, reducing the risk of overfitting.

Specific Tasks The three tasks’ branches receive the shared representation and specialise on one task.
The first task segments plumes. It consists of a convolutional layer which outputs a segmentation
map of the same height and width as the input image. The second task uses a convolutional layer
followed by a fully connected one and a softmax function to detect the type of fired fuel: hard coal,
lignite, gas, or peat (see Section[3). Estimating actual power generation, the third and most important
task, is done using a convolutional layer followed by 3 blocks of batch normalization, fully connected
layer and ReLu for the activation function. Our targets for the regression task are power generation
rates reported through [Entsoe|[2021]] that are contemporaneous with the Sentinel-2 observations and
available for each power plant in our sample.

Losses and Metrics We perform single task versus multitask training. Each of the three tasks is
learned using a specific loss function. For the plume segmentation we use the binary cross entropy
loss, for the fuel classification task we use the cross entropy loss, and, for the regression task, we use
the L1 loss. In the multitask learning setup, we scale each loss and weight them (\;); weights were
optimized as hyper-parameters with a focus on the regression task. We measure the performance of
the segmentation task with IoU, fuel classification task with accuracy, and the regression task with
Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE)

IThe code base for this work is available at github.com/HSG-AIML/RemoteSensingCO2Estimation;, the
complete data set is available at zenodo.org


https://github.com/HSG-AIML/RemoteSensingCO2Estimation
https://doi.org/10.5281/zenodo.5644746
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Figure 2: Test set power generation rates. Figure 3: Test set CO2 emission rates.

CO- Emission Estimation CO5 emission rates are directly correlated to power generation rates and
depend on other plant-specific properties, like the fuel type. Based on reported annual emissions and
power generation for a selection of hard coal and lignite power plants [Gutmann et al., 2014]], we
derive emission factors (0.940.1 t COo/MWh for lignite and 0.61+0.1 t CO2/MWh for hard coal) to
convert our predicted power generation rates to CO5 emission rates. Figure 3 compares the predicted
and ground-truth emission rates for 65 observations of 6 different hard coal and lignite power plants
for which we know plant-specific emission factors [Gutmann et al.| 2014]. Ground-truth emission
rates are derived for these 6 plants based on the plant-specific emission factors and their ground-truth
power generation rates.

5 Experimental Results

We perform a hyper-parameter search for the multitask architecture outlined in Sectiondand Figure
leading to the optimized hyper-parameters and resulting in the evaluation metrics shown in Table 1.
In Figure 2 we display the predicted power generation rate versus the ground-truth for our test sample
based on the multi-task approach ("All tasks* in Table 1), resulting in an R? of 0.83, an MAE of
139 MW, an RMSE of 261 MW and a MAPE of 19 %. CO, emission rates are estimated from
predicted power generation rates utilizing fuel-specific emission factors (see Section ] for 6 plants in
our test set for which such ground-truth information is available; the derived MAE for CO5 is 311 t/h
and the MAPE is 34 %.r We furthermore perform an ablation study with respect to weather variables
that supplement the regression task (Table 2).

6 Discussion

Our multitask approach enables us to predict power generation rates within 139 MW (MAE) and
estimate CO4 emission rates within 311 t/h (MAE) for our test set power plants. While the regression
performance is likely to improve with more training data, we found that the segmentation task
performance is already on-par with human labeling efforts. Based on Table 1 we note that the
multi-task model outperforms the single-task models trained on the same data: we observe a relative
improvement of 5% on the segmentation IoU, 39 % on the regression MAE, 26 % on the regression
R2, and 10% on the classification accuracy.

We discuss some limitations of our approach. Our plume definition, on which the power generation
rate regression is based, does not distinguish between smoke plumes resulting from the combustion
of fossil fuels and steam plumes from cooling devices. The effect of this simplification on our results
is negligible since we find that most plumes in our data set emerge from cooling towers. Furthermore,
emission factors utilized in the conversion from power generation to CO, emission are empirically
based on fuel-specific statistical considerations. While uncertainties introduced by this simplification
are propagated into our CO5 emission rates, power plant-specific emission factors might lead to better
results, but are only available for select power plants.



7 Conclusion

This work shows that it is possible to predict power generation rates with high confidence and CO,
emission rates with some confidence from single Sentinel-2 satellite images. Our proposed deep
multitask architecture was trained on a combination of three tasks and experiments confirmed that
auxiliary tasks can indeed boost the network performance. Our model is able to predict power
generation rates from individual images with R?=0.83 or within 139 MW (MAE) and CO, emission
rates within 311 t/h. For the average power plant in our sample (1177 MW capacity), our generation
predictions are of high confidence. Our method is thus able to contribute to the estimation of CO»
emission rates from power plants on a global scale.
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