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Abstract

Wildland fires pose an increasing threat in light of anthropogenic climate change.1

Fire-spread models play an underpinning role in many areas of research across this2

domain, from emergency evacuation to insurance analysis. We study paths towards3

advancing such models through deep reinforcement learning. Aggregating 21 fire4

perimeters from the Western United States in 2017, we construct 11-layer raster5

images representing the state of the fire area. A convolution neural network based6

agent is trained offline on one million sub-images to create a generalizable baseline7

for predicting the best action - burn or not burn - given the then-current state on8

a particular fire edge. A series of online, TD(0) Monte Carlo Q-Learning based9

improvements are made with final evaluation conducted on a subset of holdout fire10

perimeters. We examine the performance of the learned agent/model against the11

FARSITE fire-spread model. We also make available a novel data set and propose12

more informative evaluation metrics for future progress.13

1 Introduction14

The performance of fire-spread models, which aim to predict the spatial spreading process of an active15

fire across a given area, is important to protecting our communities from wildfire. Most contemporary16

fire spread models can be traced back to a single 1972 paper – A Mathematical Model for Predicting17

Fire Spread in Wildland Fuels – authored by Richard Rothermel [1]. While Wells (2008) points out18

that the Rothermel Model’s empirical, physically-informed approach is "still running like a champ",19

many experts recognize that the model is now being asked to do things it was never meant to do [2].20

The last decade has seen marked progress in the fields of deep learning and reinforcement learning21

and has spurred a new era for machine learning and artificial intelligence [3,4]. In the field of22

deep learning, convolutional neural networks exhibit unique predictive ability in image recognition23

tasks, including those that use remote sensing [5,6]. Deep reinforcement learning, meanwhile, has24

demonstrated the ability to solve complex optimization problems dynamically and over time in the25

presence of uncertainty [7].26

Combining these techniques, there is initial evidence to suggest that deep reinforcement learning can27

be used to learn wildfire dynamic models from historic observations and remote sensing data. We28

extend the work of Subramanian and Crowley – Using Spatial RL to Build Forest Wildfire Dynamics29

Models From Satellite Images – in hopes of unifying the latest remote sensing data, machine learning30

algorithms, and physical techniques to advance fire spread modeling [8].31

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2021.



2 Review of Literature32

2.1 Fire-Spread Modeling and Prediction33

The vast majority of today’s fire-spread models represent small changes to individual characteristics34

within the framework provided by Rothermel. Models such as FARSITE and BehavePlus are35

widely adopted in commercial and government work today but typically focus on improving select36

parameters, with incremental progress in each new generation [9,10]. But the reality in the words of37

Rothermel pupil Brett Butler, is that "(these models describe) very well a fire burning in a field of38

wheat. As you get further away from that uniformity, the less accurate (they) become [11]."39

Among the most meaningful areas of such progress has been the improvement of topographic wind40

speed modeling. Because most wildfires do not burn in a field of wheat, understanding how wind41

changes speed in complex topography is important to assessing speed and direction of fire spread.42

Wagenbrenner et al. (2016) make use of physical conservation of mass and momentum to downscale43

surface wind predictions or measurements in complex terrains [12]. While such solvers are intended to44

improve the Rothermel framework, they yield equally useful inputs for machine learned approaches.45

2.2 Machine Learning and Remote Sensing in Fire-Spread Models46

The science of remote sensing has advanced as the resolution, coverage, and frequency of such data47

improves [13]. Government funded projects such as Landsat 8 (2013) and Sentinel 1-A/B (2014-16)48

provide high resolution (20-30m) data at a consistent frequency [14,15]. Private companies such as49

Planet provide further coverage through projects like RapidEye (5m) and Planetscope (3m), both of50

which provide data from much of the planet on a daily frequency or better.51

Such data has opened the door for the use of machine learning in various applications in widlfire. For52

example, Zhang et al. (2011) provide a hybrid model that makes use of satellite imagery and is now53

used in the Canadian Forest Fire Weather Index (FWI) [16]. The use of sequential models in the form54

of markov decision processes (MDP) offers another path forward particularly relevant to fire-spread55

models. In Subramanian and Crowley (2019), a number of methods including Q-Learning, monte56

carlo tree search, and deep reinforcement learning are identified as promising opportunities.57

3 Problem Formulation/Methods58

We evaluate the spread of wildfire in a grid-based 30m resolution environment on the USGS Con-59

tiguous Albers Equal Area Conic coordinate reference system as an MDP S,A,P ,R. Our continuous60

state space, S, represents the then-current state of a given cell on the fire edge as represented by an61

11x3x3 raster of that cell and all adjacent cells. 10 layers represent constants over the observation62

period and 1 layer represents the dynamic condition of where the fire has or has not spread at a given63

time step T . Our binary action space, A, is a simple burn, not burn choice for each unburned grid64

cell on the fire edge at each time step. Our transition probability P is represented as a convolutional65

neural network (CNN) and estimates the likelihood that a burn or not burn action will maximize our66

reward R - the negative binary cross-entropy loss of the CNN at each time step.67

All code and data used for model/agent training and analysis are publicly available for reuse: github.68

com/wlross/Being_The_Fire_Final.69

3.1 Data Acquisition and Processing70

Critical to this approach is the state space as represented by historical data from each fire perimeter. A71

total of 42 fire perimeters representing a T=0 and T=Final perimeter for each of 21 fires (see Appendix72

A) from the 2017 wildfire season in the Western United States were collected via GeoMAC [17].73

Fires were manually curated to ensure consistent measurement methodologies and a geographical,74

topographical, and fuel load distribution consistent with the full set of 7418 GeoMAC perimeters75

from the 2017 fire season.76

For each fire boundary, a bounding-box representing the edges at T=Final was created and gridded77

into 30m cells. For each grid point, 10 data characteristics were gathered from several sources78

including: Planet 5m Resolution RapidEye Program - Red (1), Green (2), Blue (3), Red Edge (4), and79
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Near Infrared (5) Imagery, US Geological Survey - 30m Resolution Topography, National Weather80

Service - Average Wind Speed and Direction (7,8) and Maximum Wind Speed and Direction (9,10)81

[18,19,20]. All values were imputed to the final 30m resolution grid using mean or nearest neighbor82

approaches as appropriate.83

3.2 Training and Evaluation84

In order to train our agent, two distinct phases of model training were used. The initial offline training85

approach was introduced to increase the generalizability of the online model. The offline environment86

was also used for experimentation and hyper-parameter tuning as detailed in Appendix B. The model87

architecture used in both offline and online training is visualized as follows:88

Figure 1: Model architecture for convolutional neural network and TD(0) Monte Carlo Q-Learning

For online training, weights from offline training were transferred and additional training was89

conducted using a TD(0) Monte Carlo Q-Learning algorithm. The reinforcement learning aspect of90

this approach was consistent with the work of Subramanian and Crowley with the primary difference91

being the CNN representation of the agent and the use of more, higher resolution data layers.92

Results for final evaluation were generated using the trained agent on the four holdout fires. In93

parallel, the FlamMap 6 package was used to generate benchmark data via the FARSITE model using94

default parameters and landscape files available via the LANDFIRE program [21].95

4 Analysis of Results96

4.1 Quantitative Model Performance97

Quantitative model performance was measured using the Weighted Average F-1 Score as the primary98

metric, recognizing that accuracy measures may overstate performance of "under-burn" or "over-99

burn" models depending on the denominator used. For this research, all grid squares within the100

bounding box that were not already ignited at T=0 were used for analysis in order to fairly weight both101

"under-burn" and "over-burn" behaviors. Results were not compared to Subramanian and Crowley102

as the accuracy metrics presented did not provide a reasonable means for direct comparison and103

reproducing this work was challenging.104

Table 1: Reinforcement Learning (RL) and FARSITE (FS) Model Performance

Reinforcement Learning FARSITE Benchmark
Fire Name Precision Recall F-1 Precision Recall F-1
Buck .82 .78 .74 .64 .45 .44
Highline .77 .69 .59 .62 .43 .39
Pinal .84 .84 .81 .84 .20 .08
Sulfur .78 .72 .64 .79 .73 .74

Weighted average 0s and 1s in t=0 unburned sample area
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The RL-Model outperformed the FARSITE model on 3/4 test fires, though both had low F-1 scores.105

In general, this was due to "under-burn" by the RL Model (low class 1 recall) and "over-burn" by106

the FARSITE model (low class 0 recall). Both methods performed similarly on class 0 precision but107

the RL model significantly outperformed the FARSITE model on class 1 precision, providing some108

evidence of a better "fit" by the RL model.109

4.2 Qualitative Model Performance110

Given the relatively low F-1 scores exhibited by both the RL and FARSITE model, a smoothing func-111

tion was applied to the fire perimeter so that the final fire boundaries could be inspected qualitatively.112

This is consistent with expected use in the field - see Appendix C.113

In both cases, models appeared to be performing in ways consistent with our understanding of114

physical fire spread - burn was driven by wind direction, slope, and vegetation and obstructed by115

roads, rivers, and lakes. A visual inspection of the fire spread patterns provides some indication of116

superior performance by the RL model. For instance, the fire road present in the Highline fire and the117

river present in the Pinal both seem to have influenced a closer fit to the ground truth data for the RL118

model when compared to FARSITE, which crossed these boundaries easily - see Figure 2.119

Figure 2: RL + FARSITE Models of Highline and Pinal Fires from Test Set

5 Discussion120

The reality of fire spread models is that they are attempting to model highly stochastic physical121

processes. But given such models serve as a critical building block for climate adaptation to wildland122

fires, progress is important. When compared to existing methods like FARSITE, the results of this123

work support continued exploration of deep reinforcement learning approaches in this domain.124

The CNN-based RL methods proposed in this paper have the advantage of tailwinds in both machine125

learning research and remote sensing data availability. One challenge to progress, however, is the126

availability of remote sensing data at high resolution and high frequency. Notably, these dependencies127

are often also present (and sometimes less obvious) when working with physical models.128

Another source of challenge in this direction is the lack of standardization. Metrics like accuracy that129

have been previously reported lack sufficient context for determining model performance. The use130

of metrics like the weighted average F-1 score, which factors in both "under-burn" and "over-burn",131

alongside qualitative assessments provide an opportunity to establish new benchmarks.132

It is clear that reinforcement learning methods for fire-spread modeling are not without their chal-133

lenges. Still, this work demonstrates the potential for learned methods to, over time, add value to134

progress in fire-spread modeling.135
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Appendix A - Sample of 21 Fires from 2017 Western US Fire Season177

Train Fires

Powerline - ID - Jul Cove - CA - Jul Oak - CA - Aug
Swiss Helms - AZ - Jun Steele - CA - Jul Indian Ridge - ID - Sep
Creek - CA - Dec Preacher - NV - Jul Cub Creek - MT - Sep
Saddle - AZ - Jun Little Hogback - MT - Aug Mammoth Cave - ID - Aug
Gutzler - CO - Jul North Pelican - OR - Aug Helena - CA - Oct
Sheep - AZ - Jul Nena Springs - OR - Au

Test Fires

Pinal - AZ - May
Highline - AZ - June
Sulfur - CA - Oct
Buck - CA - Sept

Appendix B - Details around model hyper parameters for training178

The neural network’s input was a 3x3 cell array with 11 bands. The first convolutional layer creates 32 filters of179

the 3x3x11 with a kernel size of 2x2 and the second convolutional layer creates an additional 64 2x2 filters. The180

third layer is fully connected with 64 neurons followed by a dropout layer of .4. The fourth layer consists of 128181

fully connected neurons followed by a dropout layer of .2. The fifth, sixth, and seventh/output layers are fully182

connected with 64, 32, and 1 neurons respectively. The ReLU activation function is used for all layers with the183

exception of the binary output, which uses a sigmoid function. Binary cross-entropy loss is used with the adam184

optimizer in both the offline and online setting with epochs, batch size, learning rates (α), and class weights185

specified below.186

For offline training, a random sample of one million 3x3x11 images was assembled across all fires. The eleventh187

band of data representing the then-current state of the fire was substitute with random noise. The model was188

trained over 300 epochs with a batch size of 40, and a learning rate of α=1e-5. Class weights of 1 (no burn) and189

4 (burn) to account for the uneven distribution of the randomly generated dataset and to maximize recall of the190

burned area. This approach was thought to be advantaged when moved to the online environment.191

The agent/model made burn or no burn decisions for each cell and the fire edge over a number of iterations192

equal to 1.7 times the maximum wind speed. This fixed parameter ν was determined via an independent linear193

regression of the number of cells burned in a fixed period as a function of the maximum wind speed of the fire,194

regardless of directional change. For each online session, predictions were initiated as random (ε=1) and allowed195

to become increasingly ε-greedy with an exponential decay function where λ=.75 for each iterative model/agent196

update.197

Model/agent updates were performed online after every 10,000 predictions/decisions. The model was trained at198

each iteration over 80 epochs with a batch size of 400 and a learning rate of α=1e-3. Class weights of 1 (no199

burn) and 2.3 (burn) were used as these values were inversely proportional to their respective frequencies in a200

random sample of the online training data.201
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Appendix C - Example of gridded vs smooth RL output202

Figure 3: Raw vs Smooothed RL Model Prediction for Buck Fire

Appendix D - Example of RL vs FARSITE on RapidEye imagery203

Figure 4: Imagery of site of Sulfur Fire via RapidEye program with RL and FARSITE predictions
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