

Synthetic Imagery Aided Geographic Domain Adaptation for Rare Energy Infrastructure Detection in Remotely Sensed Imagery

Wei Hu, Tyler Feldman, Eddy Lin, Jose Moscoso, Yanchen J. Ou, Natalie Tarn,
Baoyan Ye, Wendy Zhang, Jordan M. Malof, Kyle Bradbury

Duke University

Overview

Motivation:

Energy systems are important anthropogenic greenhouse gas emission sources

Remote sensing and computer vision to obtain and update energy systems information

Challenge:

Visual variability of imagery across geographies

Rare objects detection

Approach:

Use **synthetically generated data** to augment real training data

1 Dataset Creation

Real Imagery Sampling

4 geographic domains:

Northwest (NW), Northeast (NE), Eastern Midwest (EM), and Southwest (SW)

At each domain:

100 images for training, 100 for validation

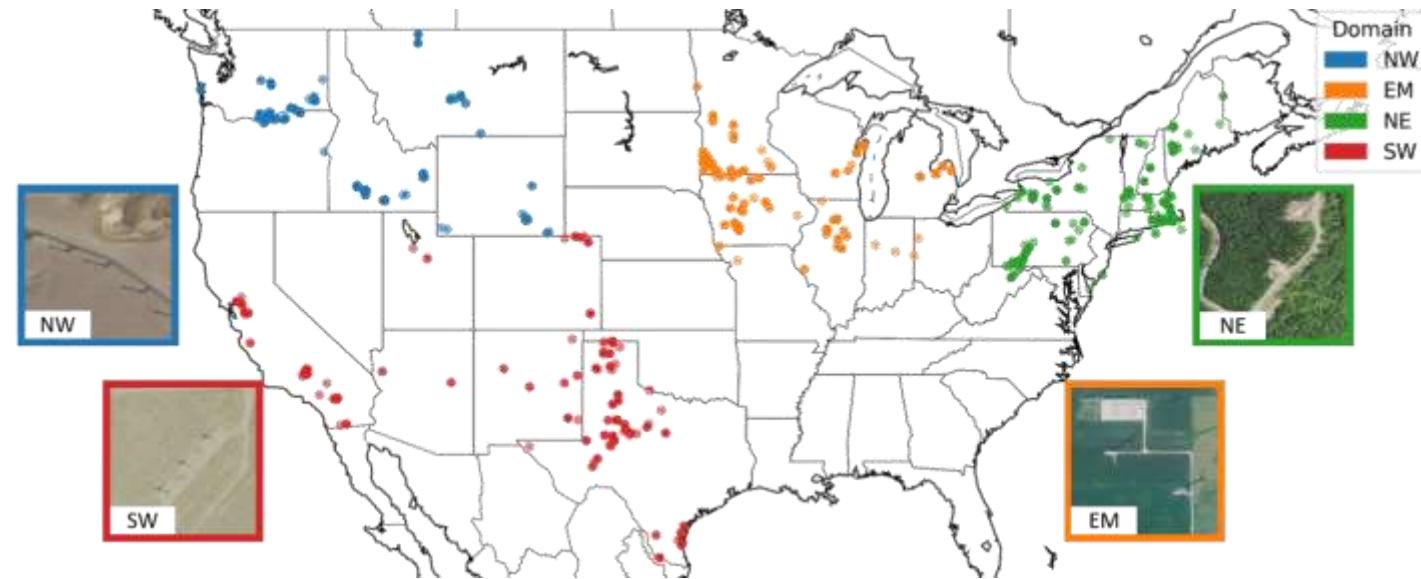
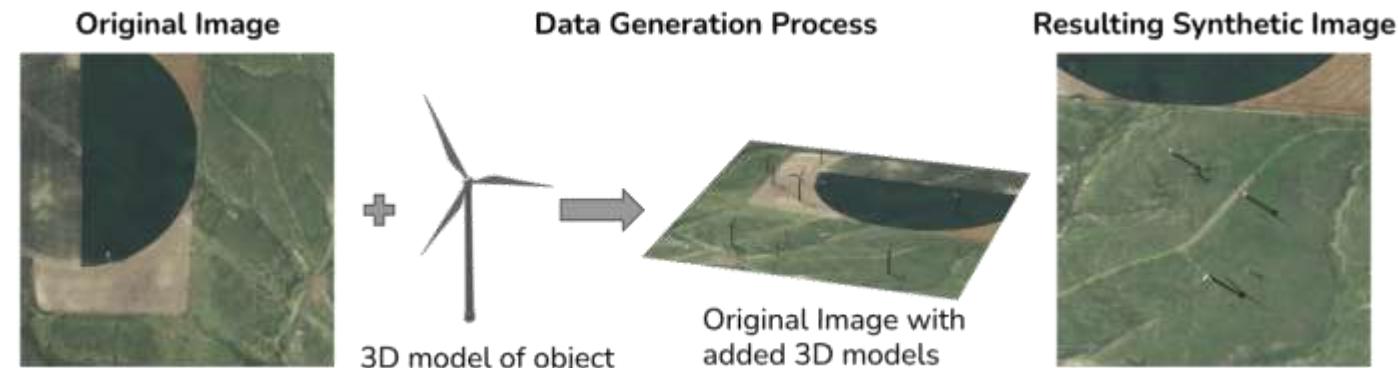
Imagery resolution:

0.6 meter/pixel

Synthetic Imagery Generation

Superimpose 3D models on real background images

No wind turbines present in background images



Impact of Adding Synthetic Imagery

Experimental setup

Object detection model:

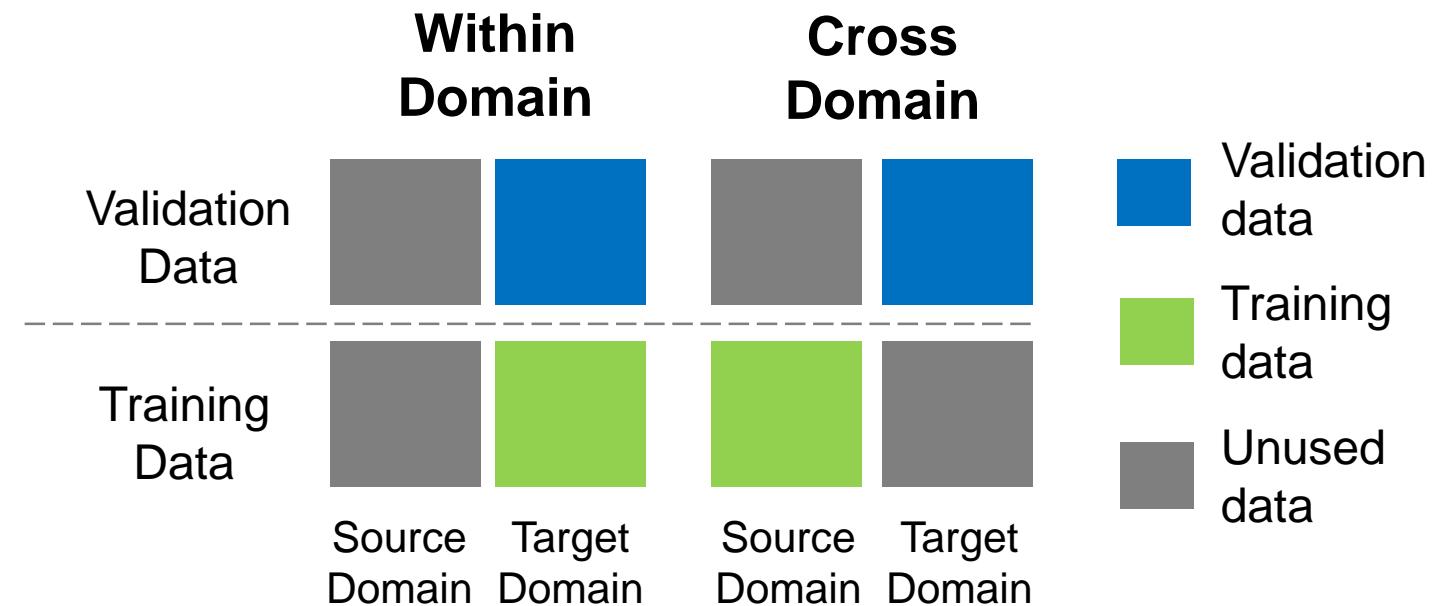
YOLOv3, repeat 4 times for each experiment

Within-domain:

Source domain is target domain

Cross-domain:

Target domain different from source domain



Impact of Adding Synthetic Imagery

Experimental setup

Object detection model:

YOLOv3, repeat 4 times for each experiment

Within-domain:

Source domain is target domain

Cross-domain:

Target domain different from source domain

Baseline:

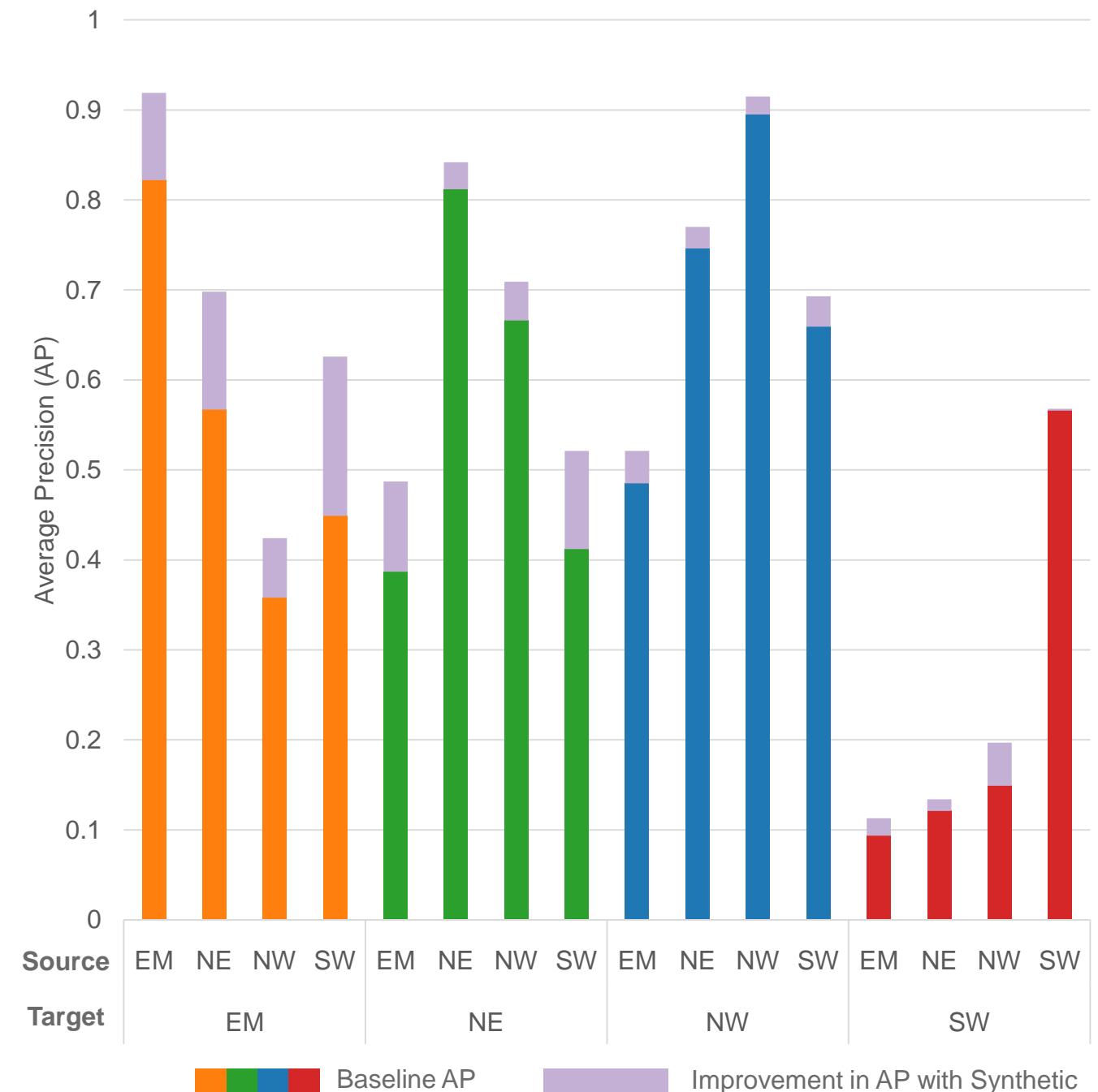
100 real training images from source domain

Experiments with added synthetic:

100 real training images from source domain + 75 synthetic training images from target domain

Evaluation metric:

Average precision (AP)



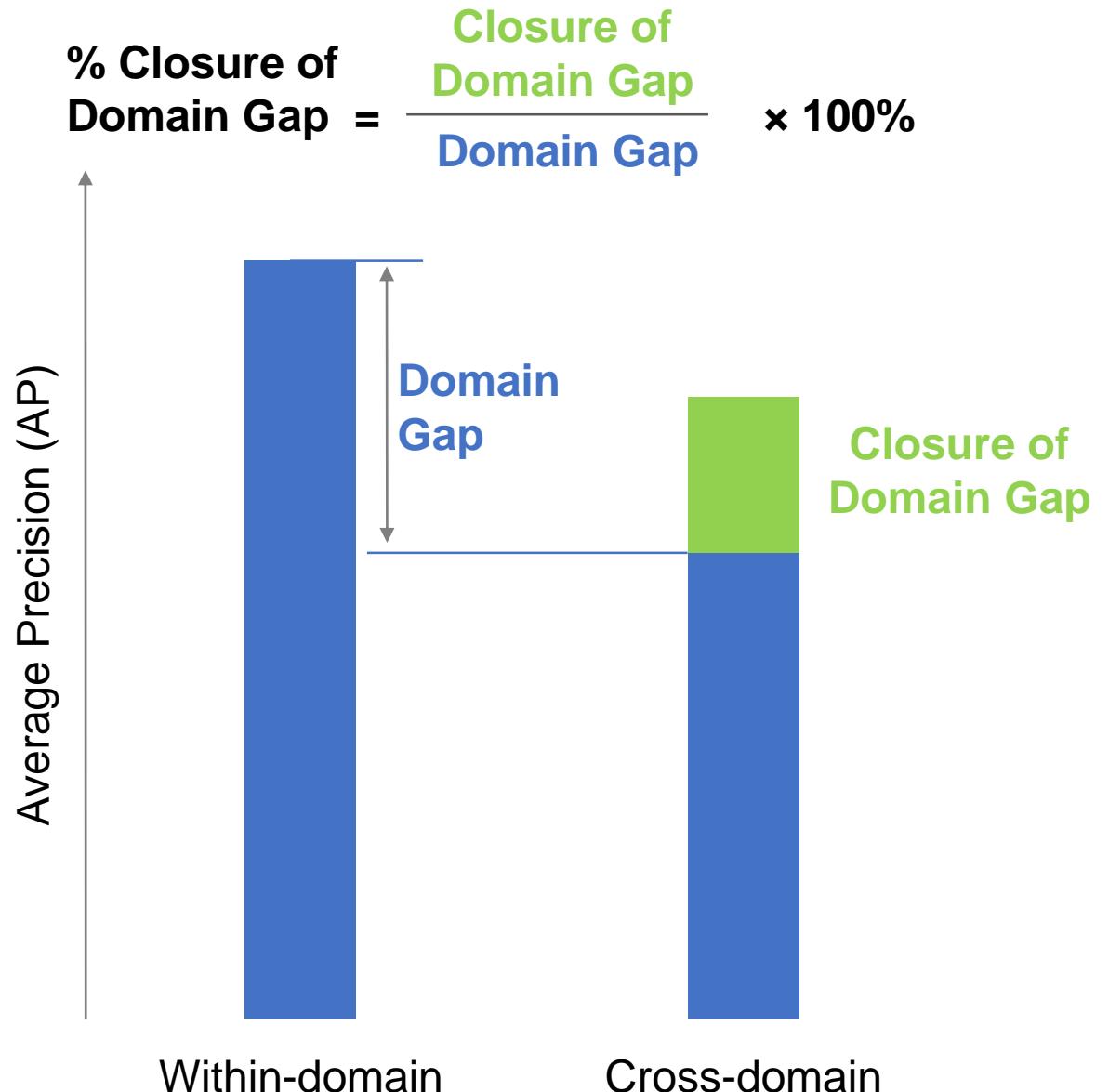
2

Impact of Adding Synthetic Imagery

Results Evaluation

Percent Improvement in AP

Percent Closure of Domain Gap (CDG%)



Impact of Adding Synthetic Imagery

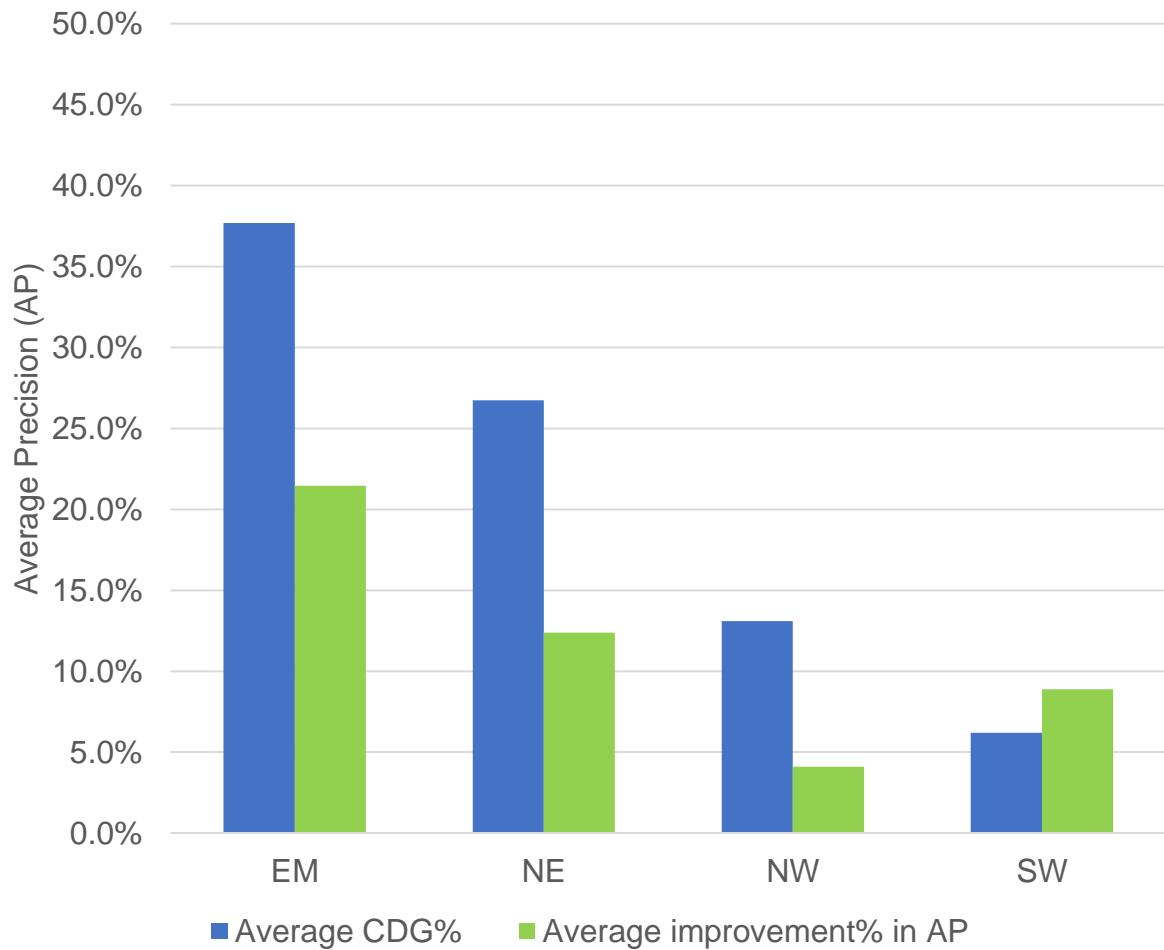
Results Evaluation

Percent Improvement in AP

Percent Closure of Domain Gap (CDG%)

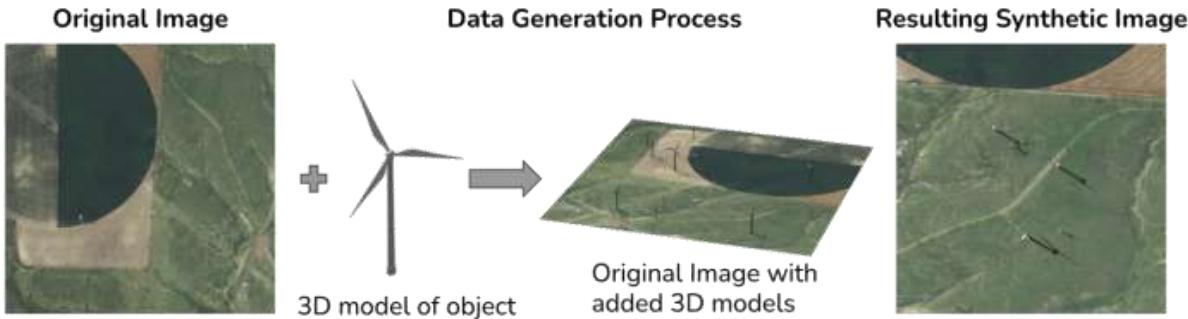
Results Summary

	Within-domain	Cross-domain
Baseline $\pm 2\sigma$	0.774 ± 0.050	0.425 ± 0.054
Adding synthetic $\pm 2\sigma$	0.811 ± 0.039	0.491 ± 0.067
Average improvement% in AP	4.8%	15.7%
Average CDG%	-	20.9%



Summary

Synthetic data generation approach for domain adaptation



Synthetic Imagery Improves Cross-domain Performance

	Within-domain	Cross-domain
Baseline $\pm 2\sigma$	0.774 ± 0.050	0.425 ± 0.054
Adding synthetic $\pm 2\sigma$	0.811 ± 0.039	0.491 ± 0.067
Average % improvement in AP	4.8%	15.7%
Average % closure of the domain gap	-	20.9%

1 Created a wind turbine dataset with labeled real and synthetically augmented imagery from 4 geographies.

2 Adding synthetic training data closed the domain gap by **20.9%** on average and improved object detection average precision (AP) by **15.7%**.