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Overview

Motivation:

Energy systems are important anthropogenic 

greenhouse gas emission sources

Remote sensing and computer vision to obtain 

and update energy systems information

Challenge: 

Visual variability of imagery across geographies

Rare objects detection

Approach:

Use synthetically generated data to augment 

real training data



Dataset Creation

Real Imagery Sampling

4 geographic domains:

Northwest (NW), Northeast (NE), Eastern Midwest 

(EM), and Southwest (SW)

At each domain:

100 images for training, 100 for validation

Imagery resolution: 

0.6 meter/pixel

Synthetic Imagery Generation

Superimpose 3D models on real background images

No wind turbines present in background images
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Impact of Adding 
Synthetic Imagery2

Experimental setup

Object detection model:

YOLOv3, repeat 4 times for each experiment

Within-domain: 

Source domain is target domain

Cross-domain: 

Target domain different from source domain
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Experimental setup

Object detection model:

YOLOv3, repeat 4 times for each experiment

Within-domain: 

Source domain is target domain

Cross-domain: 

Target domain different from source domain

Baseline: 

100 real training images from source domain

Experiments with added synthetic: 

100 real training images from source domain + 75 

synthetic training images from target domain

Evaluation metric:

Average precision (AP) 0
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Results Evaluation

Percent Improvement in AP

Percent Closure of Domain Gap (CDG%)
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Results Evaluation

Percent Improvement in AP

Percent Closure of Domain Gap (CDG%)

Results Summary

Within-domain Cross-domain

Baseline ±2𝜎 0.774±0.050 0.425±0.054

Adding synthetic ±2𝜎 0.811±0.039 0.491±0.067

Average improvement% in AP 4.8% 15.7%

Average CDG% - 20.9% 0.0%
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Created a wind turbine dataset with 

labeled real and synthetically augmented 

imagery from 4 geographies.

Adding synthetic training data closed the 

domain gap by 20.9% on average and 

improved object detection average 

precision (AP) by 15.7%.

Summary
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Synthetic Imagery Improves 

Cross-domain Performance

Within-domain Cross-domain

Baseline ±2𝜎 0.774±0.050 0.425±0.054

Adding synthetic ±2𝜎 0.811±0.039 0.491±0.067

Average % improvement in AP 4.8% 15.7%

Average % closure of the 

domain gap
- 20.9%

Synthetic data generation 

approach for domain adaptation


