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Abstract

Object detection in remotely sensed data is frequently stymied by applications in
geographies that are different from that of the training data. When objects are
rare, the problem is exacerbated further. This is true of assessments of energy
infrastructure such as generation, transmission, and end-use consumption; key
to electrification planning as well as for effective assessment of natural disaster
impacts which are varying in frequency and intensity due to climate change. We
propose an approach to domain adaptation that requires only unlabeled samples
from the target domain and generates synthetic data to augment training data for
targeted domain adaptation. This approach is shown to work consistently across
four geographically diverse domains, improving object detection average precision
by 15.7% on average for small sample sizes.

1 Introduction

Developing effective climate change mitigation and adaptation strategies requires an accurate and up-
to-date understanding of climate change drivers, especially anthropogenic greenhouse gas emissions
(GHG) from the energy sector [[1]. Energy systems, and the electricity sector in particular, are
changing rapidly: increasing renewable energy globally [2], in particular, the rise of many forms
of distributed energy, and grid expansion in Sub-Saharan Africa and parts of southeast Asia [3].
Understanding these developments and their GHG implications in near real-time is important for
establishing realistic strategies and policies for addressing climate change impacts.

However, these important energy systems data are often challenging to obtain and keep up-to-date,
and vary in availability from region-to-region. One potential solution to this limitation is to use
remote sensing data, and numerous studies have demonstrated that computer vision techniques, such
as object detection and image segmentation are capable of accurately detecting energy infrastructure
in remotely sensed data [4} 5, 6]. These techniques have been shown to work well in situations when
the training data are very representative of the validation data. In real applications of these techniques,
we often do not have labeled training data for the region to which we wish to apply our models: in
such cases, we need to adapt our approach to the new domain (i.e. domain adaptation or shift).

Recent evidence on domain adaptation [7, 18} 9] suggests that deep learning models do not generalize
well to imagery from new geographic locations. This problem arises due to the visual variability of
overhead imagery due to atmospheric conditions, sensor characteristics, regional flora, and differences
in the built environment. Some of these differences may cause the model to generalize unpredictably,
often very poorly [9].
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Figure 1: Real imagery source locations, geographic domains, and examples from each geographic
domain.

While there has been some progress on domain adaptation for deep learning [[10} [11]], this remains
challenging especially for large train/test data domain gaps and we remain far from being
able to train a model once with limited training data and apply it globally, a major hindrance for
autonomous mapping. Recent work on synthetic imagery generation for training augmentation for
rare objects offers a potential solution [9] [13] [14] [T5]. These works showed that synthetic training
imagery could supplement training sets, resulting in performance improvements. In this work we
build upon the recent SIMPL method [[14] because it is replicable, easily adapted to new problems,
and designed for object detection problems. In this work, we adapt their approach for geographic
domain adaptation, and demonstrate its effectiveness for mapping energy infrastructure in satellite
imagery across substantially larger, and more diverse, geographies.

The contributions of this paper are three-fold: (1) we created an overhead imagery dataset with
labeled wind turbines from four carefully selected geographies for evaluating domain adaptation
effectiveness; (2) the dataset includes training augmentation imagery with synthetic wind turbine
objects using unlabeled data from target domains; (3) we evaluated performance on held-out data for
all combinations of domains and demonstrate efficacy of the technique.

2 Methodology

This work focuses on object detection of wind turbines. While we could demonstrate this process for
any type of energy infrastructure, we use wind turbines because, aside from size differences, they
are relatively homogeneous in appearance, to reduce the number of variables for which we need to
control. To investigate the use of synthetically generated imagery for domain adaptation for wind
turbines, we will first create a baseline dataset of real wind turbines. Then, to create the synthetic
imagery, we use imagery from the same dataset without wind turbines and augment it with synthetic
wind turbine objects. Lastly, we will train object detection models to evaluate their performance
across domains.

2.1 Dataset creation

We first created the real imagery dataset by sampling from the National Agricultural Imagery Program
(NAIP[I6]) dataset, which is 0.6 m/pixel resolution across the U.S. We samples from 4 geographic
regions (i.e. domains) that we called Northwest (NW), Northeast (NE), Eastern Midwest (EM), and
Southwest (SW), chosen to vary in the visual appearance (Figure[T)). Using the U.S. Wind Turbine
Database (USWTDBI17]) to identify locations of wind turbines locations and manually annotated
those turbines within each each image. In total, 1,100 real images were collected in total and we
split 400 into the training set, 400 into the validation set, and 300 without wind turbines for synthetic
imagery creation, balanced equally across the four geographic domains.

Within each of the 4 domains (NW, NE, EM, and SW) there may be some internal variation, so to
increase the homogeneity within each domain, we spatially clustered the data within each domain



and performed stratified sampling from those clusters each to ensure equal spatial representation.
Using this approach, we sampled data for the baseline dataset and include 100 images in the training
and 100 images in the validation set from each of the four domains. A small number of images were
chosen to use in this study to simulate having few training examples, as may often be the case for
rare objects, such as energy infrastructure.

Next, we generated the synthetic data to supplement the real training data. We do this by taking a real
image without a wind turbine present and superimposed a 3D model of a wind turbine on top of that
image using the software CityEngine as described in [14] and as demonstrated in Figure [2] (creating
corresponding ground truth as well) Selecting the ratio of synthetic-to-real data to include for training
was another consideration requiring evaluation. Experimentally, we swept over prospective values
of the ratio and determined that 0.75:1 was optimal in this setting, generating 75 synthetic images
for each of the geographic domains. For more information on dataset construction, see Appendix
[Al With real and synthetic imagery created, we test wind turbine detection performance with and
without the addition of synthetic imagery across our different domains.
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Figure 2: Synthetic imagery generation process.

The two final datasets for each domain (show in Figure 2) are:

* Baseline dataset: 100 real source domain training images, 100 target domain real testing
images.

* Synthetic-augmented dataset: 100 real source domain training images and 75 target domain
synthetic training images, target domain 100 real testing images.

2.2 Geographic domain adaptation experimental design

To test the efficacy of synthetic imagery for domain adaptation on our wind turbine dataset, we setup
a series of experiments divided into two groups: within-domain and cross-domain experiments. For
each experiment we define a source domain as the geographic region the training images are sourced
from. This could be any of the four domains shown in Figure[2] The target domain is the region on
which we validate our trained object detection model’s performance. For within-domain experiments,
the source domain and the target domain are the same. Cross-domain experiments have different
source and target domains. In all experiments, the validation data are distinct from the training data,
regardless of source or target domain.

Our baseline experiments are comprised of training a YOLOv3 [18] object model on each of the pairs
of the four domains in our dataset, resulting in 16 experiments, varying source and target domains.
We then repeat these 16 experiments, except we augment the real training data from the source
domain with synthetic samples from the target domain. We repeat every experiment four times to
account for model variance. The hypothesis we are testing is that synthetic imagery will help our
model adapt to unseen domains, yielding performance gains.

3 Results and discussion

Performance of models trained with and without added synthetic imagery show are shown in Table[I]
Average precision (AP) is reported for all experiments and two summary metrics are also reported:
the percentage improvement in AP and the percentage closure of domain gap (CDG). CDG considers



Table 1: Average Precision of all pair-wise domain experiments. The 95% confidence intervals shown
are based on four runs of each experimental condition. In each experiment (one per row), the highest

average precision is noted in bold

. Average
Source Target g eline +20 Adding | Average closure% of
domain domain synthetic +20  improvement% domai
omain gap
EM 0.822 £0.067 0.919+0.016 11.8% -
NE EM 0.567 £0.019 0.698 +0.038 23.1% 51.4%
NW 0.358 £ 0.061 0.424+0.114 18.4% 14.2%
SW 0.449 £0.160 0.626 +0.180 39.4% 47.5%
EM 0.387 £0.031 0.487+0.114 25.8% 23.5%
NE NE 0.812 +£0.028 0.842+0.013 3. 7% -
NwW 0.666 £ 0.061 0.709 +0.049 6.5% 29.5%
SwW 0.412 £0.045 0.521 +0.089 26.5% 27.3%
EM 0.485£0.064 0.521+0.054 7.4% 8.8%
NE NW 0.746 £0.018 0.770+0.032 3.2% 16.1%
NwW 0.895+0.071 0.915+0.023 2.2% -
SW 0.659 £0.111  0.693 +0.066 5.2% 14.4%
EM 0.093 £0.016 0.113+0.008 20.9% 4.1%
NE SW 0.121 £0.029 0.134+0.030 10.7% 2.9%
NW 0.149 £0.029 0.197+0.024 32.2% 11.5%
SW 0.566 £ 0.035 0.568 +0.104 0.4% -
Within-domain average 0.774 +0.050 0.811 +0.039 4.8% -
Cross-domain average  0.425 +0.054 0.491 £+ 0.067 15.7% 20.9%

the best case scenario to be the within-class setting, and the worst case to be the cross domain setting
without synthetic data, this difference defines a "gap", and the amount of that gap which the addition
of the synthetic data recovers is the percentage CDG (see Appendix D). Across all experimental
settings, all within-domain and cross-domain experiments, adding synthetic imagery improved
average precision over the baseline. Adding synthetic imagery yielded far greater performance gains
in the cross-domain setting, when the target domain differed from the source domain. The average
across domains is summarized at the bottom of TableE] and shows while for within class experiments,
adding synthetic data offered a nontrivial 4.8% improvement in average precision, adding targeted
synthetic imagery in the cross-domain setting yielded a 15.7% improvement in average precision
compared to the baseline and closed the domain gap by 20.9%.

These improvements in domain adaptation through synthetic data augmentation are based only on
unlabeled training data from the target domain, which is often available. This approach is promising
for overcoming domain gaps in energy infrastructure assessment and for other types of infrastructure.
Further work is needed to explore other types of infrastructure to test the generalizability of this
approach across object classes. These results are encouraging for the long-term goal of being able to
apply energy infrastructure object detection models to a variety of unseen domains around the world
wherever energy systems are changing.
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Appendix A Synthetic data generation

Several considerations were taken in the design of the synthetic imagery creation to make synthetic
imagery as similar to real imagery as possible. Firstly, we modeled the size of synthetic turbines
based on the distribution of sizes of the real turbines. Second, since the camera angle is not always
perpendicular to the ground in overhead imagery, when taking snapshots of synthetic 3D scenes we
distributed the camera angle from 60 to 90 degrees, with 50% of the images being taken at 90 degrees.

When selecting the background images for the synthetic data generation, we chose images at random,
but geographically close to the real images in the validation dateset so that the synthetic imagery
would look similar to the target domain.

Another consideration was the relative quantity of real and synthetic training data. To figure out
what amount of synthetic imagery would yield the largest gain in performance, we ran experiments
to determine the optimal ratio. If we add too much synthetic data, we run the risk of overfitting to
synthetic data; if we add too little, then it will have little impact on performance. To find the optimal
real:synthetic ratio, we designed an experiment where we train YOLOV3 object detection models
using 1:0, 1:0.5, 1:0.75, 1:1, 1:2 real to synthetic ratios. We then evaluated these models on the
same testing set. 1:0.75 yielded the best performance of the options investigated, so we designed our
experiments using the 1:0.75 real-to-synthetic ratio.

Appendix B Within-domain and cross-domain experimental designs

To further clarify our within-domain and cross-domain experimental designs, we summarize those in
Figure[3] In the within-domain setting, the the source and target domains are the same, while the in
the cross-domain setting, the source and target domains are different. In all cases, separate data are
used for validation that are distinct from the training data.

Within Cross
Domain Domain
Validation
Validation . data
Data .
____________________________________ Training
data
Training
Data Unused
data

Source Target Source Target
Domain Domain  Domain Domain

Figure 3: Within-domain and cross-domain experimental design.

Appendix C Experimental setup

We trained object detection models using the YOLOvV3 framework implemented by Ultralyticﬂ Each
model was trained for 300 epochs using a batch size of 10. The input image pixel size is 608*608.
We evaluate model performance using average precision (AP). Each experiment was repeated 4
times to reduce variance and the average AP values were calculated at Intersection over Union
(IoU) threshold of 0.5. All model training and testing were conducted using an NVIDIA GeForce
RTX 2080 Ti GPU. Code base and instructions for reproduction of this paper are found at https:
//figshare.com/articles/dataset/Synthetic_Wind_Turbine_Dataset/16639546.

"https://github.com/ultralytics/yolov3
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Appendix D Percentage closure of domain gap metric

The percentage closure of domain gap (CDG) considers the best case scenario to be the within-class
setting, and the worst case to be the cross domain setting without synthetic data, this difference
defines a "gap", and the amount of that gap which the addition of the synthetic data recovers is the
percentage CDG. If average precision of with within-class setting is AP,,, the average precision
of cross-domain experiment without synthetic data is AP,., and the average precision of the cross
domain experiment with synthetic data from the target domain added is AP, s, then the percentage
closure of the domain gap is C'DG, given as follows:

AP, ., — AP,

Appendix E Results for all within-domain and cross-domain experiments

The data from Table [T was based on four repeated runs of each experimental pair for both the case of
the baseline and experimental (adding synthetic data) conditions. The full results of each experiment
for the baseline and experimental conditions are shown for the eastern midwest (EM) domain in Table
for the northeast (NE) domain in Table 3] for the northwest (NW) domain in Table [d] and for the
southwest (SW) domain in Table[5}

Table 2: Average Precision of all experiments where source domain is EM.

Source domain  Target domain Baseline AP Adding Synthetic AP

EM EM 0.804 0.929
EM EM 0.862 0.912
EM EM 0.786 0.913
EM EM 0.834 0.923
EM NE 0.373 0.552
EM NE 0.375 0.462
EM NE 0.399 0.422
EM NE 0.402 0.513
EM NW 0.527 0.533
EM NW 0.486 0.542
EM NW 0.479 0.519
EM NW 0.449 0.481
EM SW 0.104 0.132
EM SW 0.090 0.104
EM SW 0.085 0.098
EM SW 0.095 0.119




Table 3: Average Precision of all experiments where source domain is NE.

Source domain  Target domain Baseline AP Adding Synthetic AP

NE EM 0.553 0.680
NE EM 0.573 0.701
NE EM 0.570 0.687
NE EM 0.573 0.723
NE NE 0.796 0.839
NE NE 0.808 0.835
NE NE 0.817 0.847
NE NE 0.829 0.848
NE NW 0.752 0.786
NE NW 0.764 0.781
NE NW 0.746 0.758
NE NW 0.744 0.754
NE SW 0.129 0.135
NE SW 0.100 0.139
NE SW 0.122 0.130
NE SW 0.132 0.132

Table 4: Average Precision of all experiments where source domain is NW.

Source domain  Target domain Baseline AP Adding Synthetic AP

NW EM 0.370 0.447
NW EM 0.383 0.339
NW EM 0.366 0.453
NW EM 0.314 0.457
NW NE 0.623 0.724
NW NE 0.670 0.734
NW NE 0.693 0.679
NW NE 0.679 0.700
NW NW 0.911 0.905
NW NW 0.842 0.905
NW NW 0.911 0.926
NW NW 0.916 0.924
NW SW 0.139 0.198
NW SW 0.169 0.187
NW SW 0.138 0.214
NW SW 0.151 0.190




Table 5: Average Precision of all experiments where source domain is SW.

Source domain  Target domain Baseline AP Adding Synthetic AP

SW EM 0.359 0.672
SW EM 0.413 0.591
SW EM 0.483 0.518
SW EM 0.542 0.722
SW NE 0.402 0.531
SW NE 0.445 0.456
SW NE 0.403 0.546
SW NE 0.396 0.552
SW NW 0.668 0.648
SW NW 0.695 0.686
SW NW 0.578 0.722
SW NW 0.695 0.713
SW SW 0.581 0.491
SW SW 0.542 0.586
SW SW 0.563 0.605
SW SW 0.576 0.590
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