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● Solar power generation account for almost 80% of the 

increase in renewable energy generation through 20501

● Solar power is required to reduce global greenhouse gas 

emissions that stem from the energy sector each year2,3

1 Bipartisan Policy Center.  Annual energy outlook 2021.Energy Information Administration,Washington, DC, 2021.

2 Phebe Asantewaa Owusu and Samuel Asumadu-Sarkodie.   A review of renewable energysources, sustainability issues and climate change 

mitigation.Cogent Engineering, 3(1):1167990,2016

3 D Elzinga, S Bennett, D Best, K Burnard, P Cazzola, D D’Ambrosio, J Dulac, A Fernandez Pales,C Hood, M LaFrance, et al.  Energy technology 

perspectives 2015: mobilising innovation toaccelerate climate action.Paris: International Energy Agency, 2015.

Solar Energy
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Solar Energy Prediction

● Solar power is volatile and intermittent
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Existing Solutions

Use ground-based images to predict production at 
a solar plant in Hangzhou,China 1.

Deep learning model on satellite images to predict 
total daily PV for the entire nation of Germany.

Numerical weather prediction(NWP) models 

Keyong Hu, Shihua Cao, Lidong Wang, Wenjuan Li, and Mingqi Lv. A new ultra-short-termphotovoltaic power prediction model based on 
ground-based cloud images.Journal of CleanerProduction, 200:731–745, 2018

Nicolas Sebastien Jeremie Lequeux. Johan Mathe, Nina Miolane. Pvnet: A lrcn architecturefor spatio-temporal photovoltaic 
powerforecasting from numerical weather.arXiv preprintarXiv:1902.01453, 2019.

Hadrien Verbois, Robert Huva, Andrivo Rusydi, and Wilfred Walsh. Solar irradiance forecastingin the tropics using numerical weather 
prediction and statistical learning.Solar Energy, 162:265–277, 2018.
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Factors that affect Solar Irradiation

5Ref: https://www.goes-r.gov/featureStories/solarEnergyForecasts.html

https://www.goes-r.gov/featureStories/solarEnergyForecasts.html


NOAA GOES Satellite Images
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True Color Image DSR

Satellite images available on “Open Data on AWS”
https://registry.opendata.aws/noaa-goes/
File Format: netCDF

https://registry.opendata.aws/noaa-goes/


Model Features & Label
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Model Architecture

ConvLSTM2D
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Same Padding
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Pre-processed Prediction



Cell Variation - ConvGRU
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Reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Cell Variation - ConvLSTMPeepHole
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Reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Model Evaluation: RMSE
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HRRR vs ConvLSTMPeephole Model
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Group HRRR RMSE Model RMSE
Overall 124.9 108.6

Low DSR (0-300) 165.3 135.3

Medium DSR (300-600) 170.7 131.7

High DSR (600+) 103.5 98.3

ConvLSTM vs HRRR performance for predictions made for 22 locations between 
10:00AM-3:00PM PST for four weeks of the test set (RMSE,W/m2)



Future Work

● Add more number of images to model input

● Add channels to each of these images (e.g. 

infrared, near-infrared and visible)

● Train for other regions around the world
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Thank you!
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Appendix

Detail Model Performance
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