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The 

U.S. Energy Information 
Administration (EIA)

predicts that renewable energy, predominantly

wind and solar 
power, will contribute 

42% 
of the country’s electricity generation by 2050.

1(Annual Energy Outlook 2021. U.S. Energy Information Administration, 2021.)
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NWPs
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 This is
wind 

speed data 
on the 
10-km 
scale.

3A. Clifton, B.-M. Hodge, C. Draxl, J. Badger, and A. Habte, “Wind and solar resource data sets,” Wiley Interdisciplinary Reviews: Energy and 
Environment, vol. 7, no. 2, p. 276, 2018.



We want to find an accurate and realistic  
mapping between low-resolution and 
high-resolution wind and solar data.

LR Input HR Output
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The problem of super-resolution is ill-posed.
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Machine learning offers a cost effective and 
accurate solution.
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How do super-resolution models 
perform on wind and solar data with 

respect to accuracy and spectral 
similarity to the ground truth data?
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Contributions

We contribute:
● a benchmark of super-resolution models for wind 

and solar data;
● a novel application of convolutional neural 

network (CNN)- and generative adversarial 
network (GAN)-based SR techniques to climate 
data;

● and publicly-available ML-ready wind and solar 
datasets.



SOTA
PhIREGAN

Stengel et al. in 2020

Models we 
Introduce

ESRGAN
Weng et al. in 2018 

EDSR
Lim et al. in 201.

Bicubic Interpolation
Baseline

9

SR CNN
Dong et al. in 2015



Test 5x upsampling on WIND Toolkit and NSRDB data for 2014 and 
2014-2018, respectively.

UpsamplingCoarsen

(Bilinear)

Train on WIND Toolkit and NSRDB data for 2007-2013.
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Approach

Upsampling
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Sample Solar Output
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Accuracy of Wind Output
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Physical Fidelity of Wind Output
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Physical Fidelity of Solar Output

11

Ground Truth PhIREGAN EDSR ESRGAN SR CNN Bicubic
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Results

In this work, we show:

1 the perception-distortion tradeoff holds for 
climate data;

2 and GAN-based models have significant 
applications in climate scenarios.



Include Probabilistic & Physics-Based Models
variational autoencoders, normalizing flows, diffusion-based 
models, and other models which account for wind flow and 
irradiance

Test Generalization
verify if results hold when run on datasets with 
different spatial and temporal characteristics
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Future Works



@RupaVendhan

Thank you!

rkurinch@caltech.edu rupakurinchivendhan
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