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The

U.S. Energy Information
Administration (EIA)

poredicts that renewable energy, predominantly

VRiNEr- SElER

power, will contribute

42%

of the country’s electricity generation by 2050.

(Annual Energy Outlook 2021. U.S. Energy Information Administration, 2021.)
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This Is
wind
speed data
on the
10-km
scale.

A. Clifton, B.-M. Hodge, C. Draxl, J. Badger, and A. Habte, “Wind and solar resource data sets,” Wiley Interdisciplinary Reviews: Energy and
Environment, vol. 7, no. 2, p. 276, 2018.



We want to find an accurate and realistic
mapping between low-resolution and
high-resolution wind and solar data.
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The problem of super-resolution is ill-posed.
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Machine learning offers a cost effective and
accurate solution.

HR Ground Truth LR Input SR Output



How do super-resolution models
perform on wind and solar data with
respect to accuracy and spectral
similarity to the ground truth data?



Contributions

We contribute;

a benchmark of super-resolution models for wind
and solar data;

a novel application of convolutional neural
network (CNN)- and generative adversarial
network (GAN)-based SR techniques to climate
data;

and publicly-available ML-ready wind and solar
datasets.



SOTA

PhIREGAN

Stengel et al. in 2020

Models we

INntroduce
ESRGAN

Weng et al. in 2018

EDSR

Lim et al. in 201.

SR CNN

Dong et al. in 2015

Baseline

Bicubic Interpolation




Approach

Train on WIND Toolkit and NSRDB data for 2007-2013.

Coarsen

(Bilinear)

Test 5x upsampling on WIND Toolkit and NSRDB data for 2014 and
2014-2018, respectively.
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Sample Wind Output

SR Output for Northerly Wind Component (SSIM/MSE).

Bicubic

0.143/0.0032

EDSR

0.766/0.0004

SR CNN

0.542/0.0010
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0.447/0.0008
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LR Input

Sample Solar Output

SR Output for Direct Normal Irradiance (SSIM/MSE).

Bicubic

0.466/0.037

EDSR

0.543/0.003

SR CNN

0.464/0.030

PhIREGAN

0.441/0.041

ESRGAN

i
0.678/0.002
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Density

Accuracy of Wind Output
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Accuracy of Solar Output

PSNR SSIM
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Kinetic Energy

Physical Fidelity of Wind Output
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Normalized Variance
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Results

INn this work, we show:

1 the perception-distortion tradeoff holds for
climate data;

5 and GAN-based models have significant
applications in climate scenarios.
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Future Works

,9\ Include Probabilistic & Physics-Based Models

ii variational autoencoders, normalizing flows, diffusion-based
d ¥ b models, and other models which account for wind flow and
irradiance

Test Generalization

verify if results hold when run on datasets with
different spatial and temporal characteristics
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Thank you!

R. Kurinchi-Vendhan, B. Lutjens, R. Gupta, L. Werner, and D. Newman, “WiSoSuper. Benchmarking
Super-Resolution Methods on Wind and Solar Data”, arXiv [cs.CV]. 2021.
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